refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 93 results
Sort by

Filters

Technology

Platform

accession-icon GSE81666
Expression data of nuclear mRNA export mutant rae1-167 cells
  • organism-icon Schizosaccharomyces pombe
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

rae1 is an essential gene and encodes one of nuclear pore complex. rae1-167 mutant cells show rapid accumulation of polyA-RNA in the nucleus at 36C followed by protein accumulation, suggesting that accumulated nuclear mRNA influences nucelar cytooplasmic transport.

Publication Title

A systematic genomic screen implicates nucleocytoplasmic transport and membrane growth in nuclear size control.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE40066
Genetic differences in transcript responses to low-dose ionizing radiation identify tissue functions associated with breast cancer susceptibility.
  • organism-icon Mus musculus
  • sample-icon 51 Downloadable Samples
  • Technology Badge Icon Affymetrix HT Mouse Genome 430A Array (htmg430a)

Description

This study investigates three radiation exposure scenarios in BALB/c and C57BL/6 mice: (1) low dose (LD) group -- four weekly doses of 7.5 cGy, (2) high dose (HD) group -- four weekly doses of 1.8 Gy, (3) unexposed group -- four weekly sham exposures. We then used comparative expression profiles of the mouse mammary gland and cardiac blood to build a model of candidate tissue functions associated with LD cancer susceptibility in these strains and murine and human knowledgebases to characterize these tissue functions and their relevance to breast cancer.

Publication Title

Genetic differences in transcript responses to low-dose ionizing radiation identify tissue functions associated with breast cancer susceptibility.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon SRP045611
Profile of gene expression in U87-MG xenografts expressing control vector (V0), the ubiquitin ligase KPC1 or the p50 subunit of the NF-kB transcription factor, using RNASeq analysis of transcripts mapped independently to the human and murine genomes
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

Purpose: We identified KPC1 as the ubiquitin ligase that binds to the p105 precursor of NF-kB, ubiquitinates it and mediates its proteasomal processing to generate the p50 active subunit of the transcription factor. Using U87-MG human glioblastoma xenografts, we observed that overexpression of KPC1 results in strong inhibition of tumor growth mediated via excessive generation of p50.The goal of this RNASeq study was to analyze the profile of gene expression in xenografts overexpressing control (V0), KPC1 or p50 vectors, and to further understand how the altered gene expression patterns can explain the tumor suppressive effect we observed. Results:Transcript analysis of U87-MG xenografts overexpressing control (V0), KPC1 or p50 vector mapped to the human genome revealed: • A strong similarity between overexpression of p50 and KPC1 (correlation of 0.51, p-value<10-300 ) • A specific signature of NF-kB targets [21 of the consistently changed genes are known to be regulated by NF-kB (p-value<3.4×10-9 )] • A significant (p-value<1.4×10-18) increase in the expression of 40 tumor suppressor genes, with no significant change in other classes. • A significant down regulation of a cluster of genes including LIN28B, IL-6, HMAGA2 and VEGFA. This finding links well to an established regulatory axis involving LIN28B, Let-7 microRNA, and IL-6 in inflammation and cell transformation that is regulated by NF-kB. Overall design: Exponentially growing U87-MG cells were stably transfected with an empty vector (V0) or vectors coding for Myc-KPC1 or Flag-p50. Cells were dissociated with trypsin, washed with PBS, and brought to a concentration of 50×10^6 cells/ml. Cell suspension (5×10^6/0.1 ml) was inoculated subcutaneously at the right flank of 7-weeks old male Balb/C nude mice (n=7). Following 21 days, mRNA from U87-MG xenografts was isolated using an RNA purification kit, and analyzed using the Illumina HiSeq 2500 sequencer. The RNASeq analysis experiment was repeated twice independently. Run1 included a total of 7 samples. Samples 1-3 were isolated from V0 – control tumors (3 different tumors), samples 4-5 were isolated from KPC1-expressing tumors (2 different pools of 3 tumors each due to small tumor size), and samples 6-7 were isolated from p50-expressing tumors for (2 different pools of 2-3 tumors each, due to very small tumor size). Run2 included a total of 5 samples. Samples 8-10 were isolated from V0 (control) tumors (3 different tumors), samples 11-12 were isolated from KPC1 tumors (2 different pools of 3 tumors each due to small tumor size). Several repeated attempts to extract RNA from the p50-expressing tumors did not yield any results, as the tumors were miniscule.

Publication Title

KPC1-mediated ubiquitination and proteasomal processing of NF-κB1 p105 to p50 restricts tumor growth.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP096656
Crizotinib v. DMSO in SW480 cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

SW480 cells were treated with 2uM crizotinib for 72h (versus DMSO) Overall design: Examination of differential up- or down-regulated genes after crizotinib treatment

Publication Title

Global survey of the immunomodulatory potential of common drugs.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE41318
Expression data from paracrine senescence
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Senescence can be transmitted in a paracrine way from cells undergoing Oncogene Induced Senescence (OIS) to nave normal cells. We define this phenomenon as paracrine senescence

Publication Title

A complex secretory program orchestrated by the inflammasome controls paracrine senescence.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE43974
Pathways for intervention to optimize donor organ quality uncovered: a genome wide gene expression study
  • organism-icon Homo sapiens
  • sample-icon 554 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Background: Strategies to improve long term renal allograft survival have been directed to recipient dependent mechanisms of renal allograft injury. In contrast, no such efforts have been made to optimize organ quality in the donor. In order to get insight into the deleterious gene pathways expressed at different time points during deceased kidney transplantation, transcriptomics was performed on kidney biopsies from a large cohort of deceased kidney transplants.

Publication Title

Hypoxia and Complement-and-Coagulation Pathways in the Deceased Organ Donor as the Major Target for Intervention to Improve Renal Allograft Outcome.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE17553
Estradiol or Testosterone treated efferent duct and caput epididymis
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The role of estrogen and testosterone in the regulation of gene expression in the proximal reproductive tract is not completely understood. To address this question, mice were treated with testosterone or estradiol and RNA from the efferent ducts and caput epididymis was processed and hybridized to Affymetrix MOE 430 2.0 microarrays. Analysis of array output identified probe sets in each tissue with altered levels in hormone treated versus control animals. Hormone treatment efficacy was confirmed by determination of serum hormone levels pre- and post-treatment and observed changes in transcript levels of previously reported hormone-responsive genes. Tissue-specific hormone sensitivity was observed with 2867 and 3197 probe sets changing significantly in the efferent ducts after estrogen and testosterone treatment, respectively. In the caput epididymis, 117 and 268 probe sets changed after estrogen and testosterone treatment, respectively, demonstrating a greater response to hormone in the efferent ducts than the caput epididymis. Transcripts sharing similar profiles in the intact and hormone-treated animals compared with castrated controls were also identified. Ontological analysis of probe sets revealed a significant number of hormone-regulated transcripts encode proteins associated with lipid metabolism, transcription and steroid metabolism in both tissues. Real-time RT-PCR was employed to confirm array data and investigate other potential hormone-responsive regulators of proximal reproductive tract function. The results of this work reveal previously unknown responses to estrogen in the caput epididymis and to testosterone in the efferent ducts as well as tissue specific hormone sensitivity in the proximal reproductive tract.

Publication Title

Regulation of gene expression by estrogen and testosterone in the proximal mouse reproductive tract.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE58727
Expression data from E18 mouse dorsal telencephalon
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Neurons deficient in both GSK-3 alpha and beta isoforms fail to migrate properly and develop abnormal morphology. In exploring mechanisms, we found no change in Wnt transcriptional target genes.

Publication Title

GSK-3 signaling in developing cortical neurons is essential for radial migration and dendritic orientation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE40675
Expression data from E18.5 mouse dorsal telencephalon
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Radial progenitors deficient in both Mek1 and Mek2 fail to transition to the gliogenic mode in late embryogenesis, and astrocyte and oligodendroglial precursors fail to appear. In exploring mechanisms, we found the Ets transcription family member Etv5/Erm is strongly regulated by MEK. Our microarray assay showed that Erm is specifically downregulated in Mek mutant brain.

Publication Title

MEK Is a Key Regulator of Gliogenesis in the Developing Brain.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE80767
Transcriptional response to mouse and human AIM2-like receptor activation
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip, Illumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The AIM2-like Receptors Are Dispensable for the Interferon Response to Intracellular DNA.

Sample Metadata Fields

Treatment, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact