refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 22 results
Sort by

Filters

Technology

Platform

accession-icon GSE51723
Therapy-induced PML nuclear body re-formation and p53 activation trigger acute promyelocytic leukaemia cure
  • organism-icon Mus musculus
  • sample-icon 72 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The therapy-induced PML/RARA catabolism elicits the loss of APL-initiating cell self-renewal through PML NB reformation and P53 activation. These results explain the curative activity of the RA/arsenic combination, the resistance to RA of PLZF/RARA-driven APLs and they raise the prospect that activation of this PML/P53 checkpoint might have therapeutic values in other malignancies.

Publication Title

Activation of a promyelocytic leukemia-tumor protein 53 axis underlies acute promyelocytic leukemia cure.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
accession-icon GSE100617
PML is a ROS sensor activating p53 upon oxidative stress
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.1 ST Array (mogene21st), Affymetrix Mouse Gene 1.1 ST Array (mogene11st), Affymetrix Human Gene 2.1 ST Array (hugene21st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

PML is a ROS sensor activating p53 upon oxidative stress.

Sample Metadata Fields

Sex, Age, Specimen part, Cell line, Race, Time

View Samples
accession-icon GSE100616
Gene expression profiling of Pml wt and Pml KO mice liver with acetaminophen (apap) overdose (300mg/kg) i.p.
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

The Pml gene is essential to the formation of PML nuclear bodies, domains which have been associated with various functions such as apoptosis/senescence, DNA repair and cell proliferation( Lallemand-Breitenbach 2010). PML-NBs formation is regulated by cellular stress including oxidative stress(Jeanne 2010, de The 2012). To investigate the role of PML in ROS response in vivo, we analyse the expression difference to the acetaminophen toxicity, which is initiated by ROS, in Pml wt and Pml KO mice.

Publication Title

PML is a ROS sensor activating p53 upon oxidative stress.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE100615
Gene expression profiling of Pml wt and Pml KO mice liver after fasted 6h
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st), Affymetrix Mouse Gene 2.1 ST Array (mogene21st)

Description

The Pml gene is essential to the formation of PML nuclear bodies, domains which have been associated with various functions such as apoptosis/senescence, DNA repair and cell proliferation( Lallemand-Breitenbach 2010). PML-NBs formation is regulated by cellular stress including oxidative stress(Jeanne 2010, de The 2012). To investigate the role of PML in ROS response in vivo, we analyse the expression difference betweem Pml wt and Pml KO under fasted condition, which easily up-regulate ROS in BALB/cByJ background

Publication Title

PML is a ROS sensor activating p53 upon oxidative stress.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE103642
PML is a ROS sensor activating p53 upon oxidative stress
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st), Affymetrix Human Gene 2.1 ST Array (hugene21st)

Description

PML nuclear bodies (NBs) recruit partner proteins -including p53 and its regulators- controlling their abundance or function. Investigating arsenic sensitivity of acute promyelocytic leukemia, we proposed that PML oxidation promotes NB-biogenesis. Yet, physiological links between PML and oxidative stress response in vivo remain unexplored. Here we identify PML as a reactive oxygen species (ROS) sensor. Pml-/- cells accumulate ROS, while PML expression decreases ROS levels. Unexpectedly, Pml-/- embryos survive acute glutathione depletion. Moreover, Pml-/- animals are resistant to acetaminophen hepatotoxicity or fasting-induced steatosis. Molecularly, Pml-/- animals fail to properly activate oxidative stress-responsive p53 targets, while NRF2 response is accelerated. Finally, in an oxidative stress-prone background, Pml-/- animals display a longevity phenotype, likely reflecting decreased basal p53 activation. Thus, similar to p53, PML exerts basal anti-oxidant properties, but also drives oxidative stress-induced changes in cell survival/proliferation or metabolism in vivo. Through NB-biogenesis, PML therefore couples ROS-sensing to p53 responses, shedding a new light on PML role in senescence or stem cell biology.

Publication Title

PML is a ROS sensor activating p53 upon oxidative stress.

Sample Metadata Fields

Sex, Cell line, Race, Time

View Samples
accession-icon SRP131796
Clinical and genomic crosstalk between glucocorticoid receptor and estrogen receptor a in endometrial cancer [RNA-seq]
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Steroid hormone receptors are simultaneously active in many tissues and capable of altering each other's function. Estrogen receptor ? (ER) and glucocorticoid receptor (GR) are expressed in the uterus and their ligands have opposing effects on uterine growth. In endometrial tumors expressing high levels of ER, we surprisingly found that expression of GR is associated with poor prognosis. Dexamethasone reduced normal uterine growth in vivo; however, this growth inhibition was abolished in estrogen-induced endometrial hyperplasia. We observed low genomic binding site overlap when ER and GR are induced with their respective ligands; however, upon simultaneous induction they co-occupy more sites. GR binding is significantly altered by estradiol with GR recruited to ER bound loci that become more accessible upon estradiol induction. Gene expression responses to co-treatment were more similar to estradiol, but with novel regulated genes. Our results suggest phenotypic and molecular interplay between ER and GR in endometrial cancer. Overall design: ChIP-seq, ATAC-seq, and RNA-seq data collected from endometrial cancer cell lines induced with dexamethasone, estradiol, or the combination

Publication Title

FFPEcap-seq: a method for sequencing capped RNAs in formalin-fixed paraffin-embedded samples.

Sample Metadata Fields

Cell line, Treatment, Subject

View Samples
accession-icon GSE54975
Lipid-induced epigenomic changes in human macrophages identify a coronary artery disease associated variant that regulates PPAP2B expression through altered C/EBP-beta binding
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Lipid-induced epigenomic changes in human macrophages identify a coronary artery disease-associated variant that regulates PPAP2B Expression through Altered C/EBP-beta binding.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE54666
Gene expression in primary human macrophages and foam cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

The aim of the experiment was to determine the effects of 48 hours of treatment with oxidized low density lipoprotein (oxLDL) on gene expression in primary human monocyte-derived macrophages.

Publication Title

Lipid-induced epigenomic changes in human macrophages identify a coronary artery disease-associated variant that regulates PPAP2B Expression through Altered C/EBP-beta binding.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP066420
Ezh2 and Runx1 Mutations Targeted to Early Lymphoid Progenitors Collaborate to Promote Early Thymic Progenitor Leukemia [RNA-Seq 2]
  • organism-icon Mus musculus
  • sample-icon 36 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Understanding the specific cell populations responsible for propagation of leukemia is an important step for development of effective targeted therapies. Recently, the lymphoid-primed multipotent progenitor (LMPP) has been proposed to be a key propagating population in acute myeloid leukemia (AML; PMID 21251617). We have also shown that LMPPs share many functional and gene expression properties with early thymic progenitors (ETPs; PMID 22344248). This finding is of particular interest as ETP leukemias have recently been described: a distinct and poor prognostic disease entity with a transcriptional profile reminiscent of murine ETPs, showing co-expression of hematopoietic stem cell (HSC) and myeloid markers (PMID 19147408). Together, this raises the question whether ETPs can act as a leukemia-initiating/propagating cell population; however, relevant disease models to test this hypothesis are currently lacking. Analysis of the genetic landscape of ETP leukemias has revealed frequent coexistence of inactivating mutations of EZH2 and RUNX1 (PMID 22237106). We therefore generated mice with deletions of Ezh2 and Runx1 specifically targeted to early lymphoid progenitors using Rag1Cre (Ezh2fl/flRunx1fl/flRag1Cre+; DKO mice). As anticipated, HSCs lacked significant recombination in DKO mice whereas close to 100% of purified ETPs (Lin-CD4-CD8-CD44+CD25-Kit+Flt3+) showed deletion of Ezh2 and Runx1. Strikingly, despite a 16-fold reduction in thymus cellularity caused by a block in thymocyte maturation at the DN2-DN3 transition, absolute numbers of ETPs within the thymus of DKO mice were markedly expanded (12-fold; p<0.0001). In contrast, Ezh2 or Runx1 deletion alone had no impact on numbers of ETPs. RNA-sequencing of the expanded ETPs in DKO mice revealed upregulation of HSC- and myeloid-associated transcriptional programs, reminiscent of ETP leukaemia e.g. Pbx1 (log2FC=3.0; p<0.0001) and Csf3r (log2FC=1.9; p=0.0038). Single-cell gene expression analysis confirmed co-expression of HSC and myeloid programs with lymphoid genes within individual DKO ETPs. Further, some key regulators of T-cell maturation which are aberrantly expressed in ETP leukemia were also disrupted in DKO ETPs e.g. Tcf7 (log2FC=-9.5; p<0.0001). Gene expression associated with aberrant Ras signalling was also present. However, despite a continued expansion of the ETP population with age, we did not observe leukemia in DKO mice with over 1 year of follow-up. Since ETP leukemias frequently feature activating mutations in genes regulating RAS signaling, we hypothesised that the expanded “pre-leukemic” ETPs in DKO mice would be primed for leukemic transformation by signalling pathway mutation. We therefore crossed DKO mice with a Flt3ITD/+ knock-in mouse line, as internal tandem duplications (ITD) of FLT3 are frequent in ETP leukemias. Ezh2fl/flRunx1fl/flRag1Cre+Flt3ITD/+ (DKOITD) mice showed dramatically reduced survival (median 9.3 weeks) resulting from an aggressive, fully penetrant acute leukemia showing a predominantly myeloid phenotype (e.g. Mac1) but with co-expression of some lymphoid antigens (e.g. intracellular CD3). Crucially, this leukaemia could be propagated in wild-type recipients upon transplantation of the expanded ETPs. DKOITD ETPs were transcriptionally very similar to DKO ETPs, retaining expression of lymphoid alongside HSC- and myeloid-associated genes. Finally, in a lympho-myeloid cell line model (EML cells) we demonstrated that Ezh2 inactivation-induced loss of H3K27me3 is associated with a corresponding increase in H3K27Ac, a transcriptional activating signal that recruits bromodomain proteins. As such, we reasoned that our ETP leukemia model might be sensitive to bromodomain inhibitors such as JQ1. Indeed, we observed high sensitivity of expanded DKOITD ETPs to JQ1, raising the possibility of a new therapeutic approach for ETP leukemias. This novel mouse model of ETP-propagated leukemia, driven by clinically relevant mutations, provides intriguing evidence that leukemias with a predominant myeloid phenotype, but co-expressing lymphoid genes, may initiate within a bona fide early lymphoid progenitor population. Since the functional characteristics of the cell of origin of a leukaemia may direct its progression and response to therapy, these findings could have important implications for future stratification and treatment of both AML and ETP leukemias. Overall design: mRNA-sequencing of mouse Mac1+ bone marrow cells from three genotypes

Publication Title

Ezh2 and Runx1 Mutations Collaborate to Initiate Lympho-Myeloid Leukemia in Early Thymic Progenitors.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP066416
Ezh2 and Runx1 Mutations Targeted to Early Lymphoid Progenitors Collaborate to Promote Early Thymic Progenitor Leukemia [RNA-Seq 1]
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Understanding the specific cell populations responsible for propagation of leukemia is an important step for development of effective targeted therapies. Recently, the lymphoid-primed multipotent progenitor (LMPP) has been proposed to be a key propagating population in acute myeloid leukemia (AML; PMID 21251617). We have also shown that LMPPs share many functional and gene expression properties with early thymic progenitors (ETPs; PMID 22344248). This finding is of particular interest as ETP leukemias have recently been described: a distinct and poor prognostic disease entity with a transcriptional profile reminiscent of murine ETPs, showing co-expression of hematopoietic stem cell (HSC) and myeloid markers (PMID 19147408). Together, this raises the question whether ETPs can act as a leukemia-initiating/propagating cell population; however, relevant disease models to test this hypothesis are currently lacking. Analysis of the genetic landscape of ETP leukemias has revealed frequent coexistence of inactivating mutations of EZH2 and RUNX1 (PMID 22237106). We therefore generated mice with deletions of Ezh2 and Runx1 specifically targeted to early lymphoid progenitors using Rag1Cre (Ezh2fl/flRunx1fl/flRag1Cre+; DKO mice). As anticipated, HSCs lacked significant recombination in DKO mice whereas close to 100% of purified ETPs (Lin-CD4-CD8-CD44+CD25-Kit+Flt3+) showed deletion of Ezh2 and Runx1. Strikingly, despite a 16-fold reduction in thymus cellularity caused by a block in thymocyte maturation at the DN2-DN3 transition, absolute numbers of ETPs within the thymus of DKO mice were markedly expanded (12-fold; p<0.0001). In contrast, Ezh2 or Runx1 deletion alone had no impact on numbers of ETPs. RNA-sequencing of the expanded ETPs in DKO mice revealed upregulation of HSC- and myeloid-associated transcriptional programs, reminiscent of ETP leukaemia e.g. Pbx1 (log2FC=3.0; p<0.0001) and Csf3r (log2FC=1.9; p=0.0038). Single-cell gene expression analysis confirmed co-expression of HSC and myeloid programs with lymphoid genes within individual DKO ETPs. Further, some key regulators of T-cell maturation which are aberrantly expressed in ETP leukemia were also disrupted in DKO ETPs e.g. Tcf7 (log2FC=-9.5; p<0.0001). Gene expression associated with aberrant Ras signalling was also present. However, despite a continued expansion of the ETP population with age, we did not observe leukemia in DKO mice with over 1 year of follow-up. Since ETP leukemias frequently feature activating mutations in genes regulating RAS signaling, we hypothesised that the expanded “pre-leukemic” ETPs in DKO mice would be primed for leukemic transformation by signalling pathway mutation. We therefore crossed DKO mice with a Flt3ITD/+ knock-in mouse line, as internal tandem duplications (ITD) of FLT3 are frequent in ETP leukemias. Ezh2fl/flRunx1fl/flRag1Cre+Flt3ITD/+ (DKOITD) mice showed dramatically reduced survival (median 9.3 weeks) resulting from an aggressive, fully penetrant acute leukemia showing a predominantly myeloid phenotype (e.g. Mac1) but with co-expression of some lymphoid antigens (e.g. intracellular CD3). Crucially, this leukaemia could be propagated in wild-type recipients upon transplantation of the expanded ETPs. DKOITD ETPs were transcriptionally very similar to DKO ETPs, retaining expression of lymphoid alongside HSC- and myeloid-associated genes. Finally, in a lympho-myeloid cell line model (EML cells) we demonstrated that Ezh2 inactivation-induced loss of H3K27me3 is associated with a corresponding increase in H3K27Ac, a transcriptional activating signal that recruits bromodomain proteins. As such, we reasoned that our ETP leukemia model might be sensitive to bromodomain inhibitors such as JQ1. Indeed, we observed high sensitivity of expanded DKOITD ETPs to JQ1, raising the possibility of a new therapeutic approach for ETP leukemias. This novel mouse model of ETP-propagated leukemia, driven by clinically relevant mutations, provides intriguing evidence that leukemias with a predominant myeloid phenotype, but co-expressing lymphoid genes, may initiate within a bona fide early lymphoid progenitor population. Since the functional characteristics of the cell of origin of a leukaemia may direct its progression and response to therapy, these findings could have important implications for future stratification and treatment of both AML and ETP leukemias. Overall design: mRNA-sequencing of mouse early thymic precursors from three genotypes

Publication Title

Ezh2 and Runx1 Mutations Collaborate to Initiate Lympho-Myeloid Leukemia in Early Thymic Progenitors.

Sample Metadata Fields

Cell line, Subject

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact