refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 97 results
Sort by

Filters

Technology

Platform

accession-icon GSE3893
Gene Expression Profiling of matched Ductal Carcinomas in Situ and Invasive Breast Tumors
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

This is a matched-pair analysis of ductal carcinoma in situ (DCIS) and invasive component (IDC) of nine breast ductal carcinoma to identify novel molecular markers characterizing the transition from DCIS to IDC for a better understanding of its molecular biology.

Publication Title

Progression-specific genes identified by expression profiling of matched ductal carcinomas in situ and invasive breast tumors, combining laser capture microdissection and oligonucleotide microarray analysis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE64248
Quantification of regenerative potential in primary human mammary epithelial cells
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

We present an organoid regeneration assay in which freshly dissociated human mammary epithelial cells from healthy donors are grown in adherent/rigid or floating/compliant collagen I gels. In both conditions, luminal progenitors (CD49f+EpCAM+) form spheres, whereas basal cells (CD49fhiEpCAM-) generate branched ductal structures. However, in compliant but not rigid collagen gels, branching ducts form alveoli at their tips, express basal and luminal markers at correct positions and display contractility, which is required for alveologenesis. Thereby, branched structures generated in compliant collagen gels resemble terminal ductal-lobular units (TDLUs), the functional units of the mammary gland.

Publication Title

Quantification of regenerative potential in primary human mammary epithelial cells.

Sample Metadata Fields

Sex, Specimen part, Disease, Subject

View Samples
accession-icon GSE61206
MET after transient Twist activation results in de novo gain of malignant traits
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

During Epithelial-Mesenchymal Transition (EMT), apical-basal polarized epithelial cells are converted to front-to-back polarized mesenchymal cells that only form loose cell-cell adhesions. These phenotypic changes are accompanied by acquisition of increased motility and invasiveness. EMT programs are orchestrated by pleiotropic transcription factors (TFs), such as Twist1 and Snail1 and effect morphogenetic steps during embryogenesis, including mesoderm formation and neural crest migration. EMTs have also been implicated in the acquisition of aggressive traits by carcinoma cells, including the ability to complete several steps of the metastatic cascade as well as propagation of the tumor by single cells (clonogenicity), a defining trait of tumor-initiating or cancer stem cells. However, the molecular links between the expression of EMT-TFs, the process of EMT and acquisition of clonogenicity remain obscure.

Publication Title

Stem-cell-like properties and epithelial plasticity arise as stable traits after transient Twist1 activation.

Sample Metadata Fields

Sex, Specimen part, Cell line

View Samples
accession-icon GSE79040
RIPK3 restricts myeloid leukemogenesis by promoting cell death and differentiation of leukemia initiating cells
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 R2 expression beadchip

Description

Examination of gene expression patterns in lineage negative FLT3-ITD and pMIG-transduced BM cells via microarray study.

Publication Title

RIPK3 Restricts Myeloid Leukemogenesis by Promoting Cell Death and Differentiation of Leukemia Initiating Cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE70457
Whole-genome profiling of the liver transcriptome in Trpm6 gene deficient mice and control littermates.
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

To attain deeper insight into metabolic alterations in Trpm6 gene deficient mice we used microarrays for profiling of hepatic transcripts of Trpm6 ko and control mice.

Publication Title

Epithelial magnesium transport by TRPM6 is essential for prenatal development and adult survival.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon SRP076334
Identification of rare, dormant and therapy resistant stem cells in acute lymphoblastic leukemia
  • organism-icon Homo sapiens
  • sample-icon 228 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1500

Description

Tumor relapse is associated with dismal prognosis, but responsible biological principles remain incompletely understood. To isolate and characterize relapse-inducing cells, we used genetic engineering and proliferation-sensitive dyes in patient-derived xenografts of acute lymphoblastic leukemia (ALL). We identified a rare subpopulation that resembled relapse-inducing cells with combined properties of long-term dormancy, treatment resistance, and stemness. Single-cell and bulk expression profiling revealed their similarity to primary ALL cells isolated from pediatric and adult patients at minimal residual disease (MRD). Therapeutically adverse characteristics were reversible, as resistant, dormant cells became sensitive to treatment and started proliferating when dissociated from the in vivo environment. Our data suggest that ALL patients might profit from therapeutic strategies that release MRD cells from the niche. Overall design: Gene expression profiles from two PDX ALL Samples (ALL-199 & ALL-265) were generated for either dormant (LRC) vs. dividing (non-LRC) cells or drug treated vs. non-treated cells. For single cell analysis one mouse were analyzed for each condition.

Publication Title

Characterization of Rare, Dormant, and Therapy-Resistant Cells in Acute Lymphoblastic Leukemia.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon GSE10748
Expression data from brain tissue of Rattus norvegicus treated with D-Serine
  • organism-icon Rattus norvegicus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

d-serine is naturally present throughout the human body. It is also used as add-on therapy for treatment-refractory schizophrenia. d-Serine interacts with the strychnine-insensitive glycine binding site of NMDA receptor, and this interaction could lead to potentially toxic activity (i.e., excitotoxicity) in brain tissue. The transcriptomic changes that occur in the brain after d-serine exposure have not been fully explored.

Publication Title

D-Serine exposure resulted in gene expression changes implicated in neurodegenerative disorders and neuronal dysfunction in male Fischer 344 rats.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE15770
WT and Get1 +/- Bladder Time Course
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Skin and bladder epithelia form effective permeability barriers through the activation of distinct differentiation gene programs. Employing a genome-wide gene expression study, we identified transcription regulators whose expression correlates highly with that of differentiation markers both in bladder and skin, including the Grainyhead factor Get1/Grhl3, already known to be important for epidermal barrier formation. In the bladder, Get1 is most highly expressed in the differentiated umbrella cells and its mutation in mice leads to a defective bladder epithelial barrier formation due to failure of apical membrane specialization. Genes encoding components of the specialized urothelial membrane, the uroplakins, were downregulated in Get1-/- mice. At least one of these genes, Uroplakin II, is a direct target of Get1. The urothelial-specific activation of the Uroplakin II gene is due to selective binding of Get1 to the Uroplakin II promoter in urothelial cells, most likely regulated by histone modifications. These results demonstrate a key role for Get1 in urothelial differentiation and barrier formation.

Publication Title

The epidermal differentiation-associated Grainyhead gene Get1/Grhl3 also regulates urothelial differentiation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE15772
WT Dorsal Skin Time Course
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Skin and bladder epithelia form effective permeability barriers through the activation of distinct differentiation gene programs. Employing a genome-wide gene expression study, we identified transcription regulators whose expression correlates highly with that of differentiation markers both in bladder and skin, including the Grainyhead factor Get1/Grhl3, already known to be important for epidermal barrier formation. In the bladder, Get1 is most highly expressed in the differentiated umbrella cells and its mutation in mice leads to a defective bladder epithelial barrier formation due to failure of apical membrane specialization. Genes encoding components of the specialized urothelial membrane, the uroplakins, were downregulated in Get1-/- mice. At least one of these genes, Uroplakin II, is a direct target of Get1. The urothelial-specific activation of the Uroplakin II gene is due to selective binding of Get1 to the Uroplakin II promoter in urothelial cells, most likely regulated by histone modifications. These results demonstrate a key role for Get1 in urothelial differentiation and barrier formation.

Publication Title

The epidermal differentiation-associated Grainyhead gene Get1/Grhl3 also regulates urothelial differentiation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE22443
Expression data for nave IL-2 and IL-12 primed Pmel-1 CD8+ T-cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The expansion, trafficking and functional effectiveness of adoptively transferred CD8+ T-cells play a critical role in mediating effective anti-tumor immunity. However, the mechanisms which program the highly proliferative and functional state of CD8+ T-cells are not completely understood. We hypothesized that IL-12, a cytokine commonly induced by TLR activation, could enhance T-cell priming by altering responsiveness to antigen and cytokines. Priming of tumor specific CD8+ T-cells in the presence of IL-12 induced the acquisition of a 'polyfunctional' effector response and increased the generation of memory cells. Moreover, IL-12 priming also promoted high levels of the IL-2 receptor alpha-chain (CD25) and robust IL-2 mediated activation of STAT5. This sensitivity to IL-2 translated into enhanced in vivo proliferation of adoptively transferred CD8+ T-cells. Furthermore, real-time, in vivo imaging of T-cell trafficking confirmed the ability of IL-12 priming to drive in vivo proliferation. IL-12 priming enhanced the anti-tumor function of adoptively transferred cells by reducing established subcutaneous tumor burden, and significantly increasing survival in an established intracranial tumor model. Finally, IL-12 priming of human PBMCs generates tumor specific T-cells phenotypically and functionally similar to IL-12 primed Pmel-1 T-cells. These results highlight IL-12 as an important mediator of CD8+ T-cell effector function and anti-tumor immunity.

Publication Title

Enhanced sensitivity to IL-2 signaling regulates the clinical responsiveness of IL-12-primed CD8(+) T cells in a melanoma model.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact