The ontogeny of human Langerhans cells (LCs) remains poorly characterized, in particular the nature of LC precursors and the factors that may drive LC differentiation. Through a systematic transcriptomic analysis of TSLP-activated dendritic cells (DCs), we unexpectedly identified markers that have been associated with a skin-homing potential as well as with a LC phenotype. We performed transcriptomic analysis of TSLP-activated blood DCs, as compared to freshly purified, Medium-, and TNF-activated DCs. Among TSLP up-regulated genes, we identified molecules associated with skin homing, LC phenotype, and LC function, as determined by a literature-based survey. Conversely, genes not expressed in LCs were not found among TSLP-induced genes. Further experiments showed that TGF- synergized with TSLP leading to the differentiation of blood BDCA-1+ DCs into bona fide Birbeck granule-positive LCs.
Human blood BDCA-1 dendritic cells differentiate into Langerhans-like cells with thymic stromal lymphopoietin and TGF-β.
Specimen part
View SamplesTranscriptional analysis of human T cells differentiated in 4 T Helper context ( Th0, Th1, Th2 and Th17) in the presence or not of Interferon alpha
Combinatorial flexibility of cytokine function during human T helper cell differentiation.
Specimen part
View SamplesIntegration of multiple signals shapes cell adaptation to their microenvironment through synergistic and antagonistic interactions. The combinatorial complexity governing signal integration for multiple cellular output responses has not been resolved. For outputs measured in the conditions 0 (control), signals X, Y, X+Y, combinatorial analysis revealed 82 possible interaction profiles, which we biologically assimilated to 5 positive, and 5 negative interaction modes. To experimentally validate their use in living cells, we designed an original computational workflow, and applied it to transcriptomics data of innate immune cells integrating physiopathological signal combinations. Up to 9 of the 10 defined modes coexisted in context-dependent proportions. Each integration mode was enriched in specific molecular pathways, suggesting a coupling between genes involved in particular functions, and the corresponding mode of integration. We propose that multimodality and functional coupling are general principles underlying the systems level integration of physiopathological and pharmacological stimuli by mammalian cells.
Combinatorial code governing cellular responses to complex stimuli.
Time
View SamplesTranscriptome analysis of five population of Antigen Presenting Cells: inflammatory macrophages, Inflammatory dendritic cells, Cd14+CD16- monocytes, CD14 dim Cd16+ monocytes and BDCA1+ Dendritic cells.
Human inflammatory dendritic cells induce Th17 cell differentiation.
No sample metadata fields
View SamplesLung adenocarcinoma (LUAD)-derived oncogenic Wnts increase cancer cell proliferative/stemness potential, but whether they also impact the immune microenvironment is unknown. Here we show that LUAD cells use paracrine Wnt1 signaling to induce immune resistance. Wnt1 correlated strongly with tolerogenic genes on the TCGA expression data. In another cohort, Wnt1 was inversely associated with T cell abundance. Altering Wnt1 expression profoundly affected growth of murine lung adenocarcinomas and this was strongly dependent on conventional dendritic cells and T cells. Mechanistically, Wnt1 lead to transcriptional silencing of CC/CXC chemokines in dendritic cells and T cell cross-tolerance. Wnt-target genes were up-regulated in human intratumoral dendritic cells and decreased upon silencing Wnt1, accompanied by enhanced T cell cytotoxicity. siWnt1-loaded nanoparticles as single therapy or part of combinatorial immunotherapies acted at both arms of the cancer-immune ecosystem to halt tumor growth. Collectively, our studies show that Wnt1 enhances adaptive immune rejection of lung adenocarcinomas and highlight its potential targeting as a novel therapeutic strategy Overall design: RNAseq data of two DC subsets of 4 patients with lung adenocarcinomas (LUADs).
Wnt1 silences chemokine genes in dendritic cells and induces adaptive immune resistance in lung adenocarcinoma.
Sex, Age, Specimen part, Subject
View SamplesThis study showed that the oncogenic ligand Wnt1 silences chemokine genes in dendritic cells, leading to impaired cross-priming of T cells in lung adenocarcinoma. Blocking Wnt1 enhanced rejection of tumors by acting concomitantly at the cancer and immune cell level. Overall design: 3' RNA-Seq (QuantSeq) profiling of sorted cDCs populations from WNT1 overexpressing and control (Empty) lung tumors.
Wnt1 silences chemokine genes in dendritic cells and induces adaptive immune resistance in lung adenocarcinoma.
Specimen part, Cell line, Subject
View SamplesCertain neuron types fire spontaneously at high rates, an ability that is crucial for their function in brain circuits. The spontaneously active GABAergic neurons of the substantia nigra pars reticulata (SNr), a major output of the basal ganglia, provide tonic inhibition of downstream brain areas. A depolarizing "leak" current supports this firing pattern, but its molecular basis remains poorly understood. To understand how SNr neurons maintain tonic activity, we used single-cell RNA sequencing to determine the transcriptome of individual SNr neurons. We discovered that SNr neurons express the sodium leak current, NaLCN and that SNr neurons lacking NaLCN have impaired spontaneous firing. Overall design: RNA sequencing profiles from 87 GFP-positive GABAergic SNr neurons and 9 GFP-negative SNr cells were carried out. However only 80 samples that passed initial quality control and that were included in the data processing are represented in this record.
The leak channel NALCN controls tonic firing and glycolytic sensitivity of substantia nigra pars reticulata neurons.
Specimen part, Cell line, Subject
View SamplesGene expression heterogeneity in the pluripotent state of mouse embryonic stem cells (mESCs) has been increasingly well-characterized. In contrast, exit from pluripotency and lineage commitment have not been studied systematically at the single-cell level. Here we measured the gene expression dynamics of retinoic acid driven mESC differentiation using an unbiased single-cell transcriptomics approach. We found that the exit from pluripotency marks the start of a lineage bifurcation as well as a transient phase of susceptibility to lineage specifying signals. Our study revealed several transcriptional signatures of this phase, including a sharp increase of gene expression variability and a handover between two classes of transcription factors. In summary, we provide a comprehensive analysis of lineage commitment at the single cell level, a potential stepping stone to improved lineage control through timing of differentiation cues. Overall design: Bulk and single-cell RNA-seq (SCRB-seq and SMART-seq) of mouse embryonic stem cells after different periods of continuous exposure to retinoic acid. Bulk RNA-seq of cell lines derived after retinoic exposure and after differentiation with retinoic acid and MEK inhibitor combined.
Dynamics of lineage commitment revealed by single-cell transcriptomics of differentiating embryonic stem cells.
Cell line, Subject
View SamplesLung fibroblasts play a pivotal role in pulmonary fibrosis, a devastating lung diseases, by producing extracellular matrix. MicroRNAs (miRNAs) suppress a lot of genes posttranscriptionally, but the dynamics and the role of miRNAs in activated lung fibroblasts in fibrotic lung has been poorly understood. We found miR-19a, 19b and 20a subcluster expression increased in activated lung fibroblasts as the fibrosis progression. To elucidate whether fibroblast-specific intervention against miR-19a, 19b and 20a subcluster modulates pathogenic activation of lung fibroblasts in vivo, we intratracheally-transferred the subcluster-overexpressed fibroblasts into bleomycin-treated lungs and performed global transcriptome analysis. Overall design: miR-19a, 19b and 20a subcluster-overexpressed fibroblasts and mock-expressed fibroblasts were intratracheally-transferred to B6 mice at day 7 post-administration of 2 mg/kg of bleomycin. Donor cells were recoverred at day 3 post-transfer by cell sotring. Global transcriptome of transferred fibroblasts was generated by 3'SAGE-seq using Ion Proton sequencer.
Lung fibroblasts express a miR-19a-19b-20a sub-cluster to suppress TGF-β-associated fibroblast activation in murine pulmonary fibrosis.
Specimen part, Subject
View SamplesInduced pluripotency is a promising avenue for disease modeling and therapy, but the molecular principles underlying this process, particularly in human cells, remain poorly understood due to donor-to-donor variability and intercellular heterogeneity. Here we constructed and characterized a clonal, inducible human reprogramming system that provides a reliable source of cells at any stage of the process. This system enabled integrative transcriptional and epigenomic analysis across the human reprogramming timeline at high resolution. We observed distinct waves of gene network activation, including the ordered re-activation of broad developmental regulators followed by early embryonic patterning genes and culminating in the emergence of a signature reminiscent of pre-implantation stages. Moreover, complementary functional analyses allowed us to identify and validate novel regulators of the reprogramming process. Altogether, this study sheds light on the molecular underpinnings of induced pluripotency in human cells and provides a robust cell platform for further studies. Overall design: mRNA sequencing of primary and secondary fibroblasts with reference BJ (supplementary file fibroblasts), reprogramming intermendiates from untreated hiF-T reprogramming (supplementary file reprogramming), or selective time points upon LSD1 inhibitor treatment (supplementary file LSD1i). RNA samples used for mRNA sequencing are the same used for smallRNA sequencing.
Integrative Analyses of Human Reprogramming Reveal Dynamic Nature of Induced Pluripotency.
No sample metadata fields
View Samples