This SuperSeries is composed of the SubSeries listed below.
ACSL1 Is Associated With Fetal Programming of Insulin Sensitivity and Cellular Lipid Content.
Sex
View SamplesWe hypothesised that SGA as a proxy for intrauterine growth restriction promotes specific epigenetic marks and pathways, whose physiological implications may become apparent only in the fully differentiated state.
ACSL1 Is Associated With Fetal Programming of Insulin Sensitivity and Cellular Lipid Content.
Sex
View SamplesWe hypothesised that SGA as a proxy for intrauterine growth restriction promotes specific epigenetic marks and pathways, whose physiological implications may become apparent only in the fully differentiated state.
ACSL1 Is Associated With Fetal Programming of Insulin Sensitivity and Cellular Lipid Content.
Sex
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Molecular pathways reflecting poor intrauterine growth are found in Wharton's jelly-derived mesenchymal stem cells.
Specimen part
View SamplesIn order to identify gene-expression patterns in mesenchymal stem cells associated with different birth weights and intrauterine growth parameters,
Molecular pathways reflecting poor intrauterine growth are found in Wharton's jelly-derived mesenchymal stem cells.
Specimen part
View SamplesIn order to identify gene-expression patterns in mesenchymal stem cells associated with different birth weights and intrauterine growth parameters,
Molecular pathways reflecting poor intrauterine growth are found in Wharton's jelly-derived mesenchymal stem cells.
Specimen part
View SamplesIn order to identify gene-expression patterns in mesenchymal stem cells associated with different birth weights and intrauterine growth parameters,
Molecular pathways reflecting poor intrauterine growth are found in Wharton's jelly-derived mesenchymal stem cells.
Specimen part
View SamplesBio-electrospray, the direct jet-based cell handling apporach, is able to handle a wide range of cells. Studies at the genomic, genetic, and the physiological level have shown that, post-treatment, cellular integrity is unperturbed and a high percentage (>70%, compared to control) of cells remain viable. Although, these results are impressive, it may be argued that cell based systems are oversimplistic. This study utilizing a well characterised multicellular model organism, the non-parasitic nematode Caenorhabditis elegans. Nematodes were subjected to bio-electrosprays to demonstrate that bio-electrosprays can be safely applied to nematodes.
Bio-electrospraying the nematode Caenorhabditis elegans: studying whole-genome transcriptional responses and key life cycle parameters.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Toxicogenomics of iron oxide nanoparticles in the nematode C. elegans.
Specimen part
View SamplesSuperparamagnetic Iron Oxide Nanoparticles (SPIONs) are currently being investigated for a range of biomedical applications. Their use have been related with different cytotoxic mechanisms including the generation of oxidative stress and the induction of metal detoxification pathways, among others. We have investigated the molecular mechanisms responsive to in-house fabricated citrate coated SPIONs (C-SPIONs) in the nematode C. elegans to compare in vivo findings with previous in vitro studies. C-SPIONs (500 g/ml) affected the transcriptional response of signal transduction cascades (i.e. TFG-beta), protein processing in the endoplasmic reticulum, and RNA transport, among other biological processes. They also triggered a lysosomal response, indicating a relevant biological role of this cellular compartment in the response to this nanoparticle treatment in C. elegans. Interestingly, other pathways frequently linked to nanotoxicity like oxidative stress or apoptosis were not identified as significantly affected in this genome-wide in vivo study despite the high dose of exposure.
Toxicogenomics of iron oxide nanoparticles in the nematode C. elegans.
Specimen part
View Samples