refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 864 results
Sort by

Filters

Technology

Platform

accession-icon GSE61989
Expression data from HUVEC with YAP siRNA knockdown
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

YAP knockdown in HUVEC elicits proliferation and cell cycle preogression defects. YAP deficient cells caused arrest in G1 and defects in S-phase entry. The microarray analysis was conducted to identify potential YAP targets that are involved in HUVEC cell cycle regulation

Publication Title

YAP regulates S-phase entry in endothelial cells.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP185876
Lats1/2 suppress NFkB and aberrant EMT initiation to permit pancreas progenitor differentiation
  • organism-icon Mus musculus
  • sample-icon 32 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

The Hippo pathway directs cell differentiation during organogenesis, in part by restricting proliferation. How Hippo signaling maintains a proliferation-differentiation balance in developing tissues and its underlying molecular targets are poorly understood. Our study shows that Hippo suppresses NF?B signaling in pancreatic progenitors to permit cell differentiation and developmental progression. We found that pancreas-specific Lats1/2 kinase deletion (Lats1/2PanKO) from mouse progenitor epithelia results in failure to differentiate 3 key pancreatic lineages: acinar, ductal, and endocrine. We performed an unbiased transcriptome analysis to query the differentiation defects in Lats1/2PanKO. This analysis revealed increased NF?B activator expression, including the pantetheinase Vanin1 (Vnn1). Through in vivo and ex vivo studies, we show that VNN1 activates a detrimental cascade of processes in Lats1/2PanKO epithelium, whereby 1) NF?B activation and 2) initiation of epithelial-to-mesenchymal transition (EMT) together override normal differentiation. We show that exogenous stimulation of VNN1 or NF?B can also trigger this cascade in WT pancreatic progenitors. These findings show that pancreas development requires active suppression of NF?B by LATS1/2 kinases to restrain a cell-autonomous transcriptional program and thereby allow for differentiation. Overall design: RNA-Seq comparing total RNA from 5 WT samples and 3 Lats1/2-deficient pancreas samples at E11.0.

Publication Title

LATS1/2 suppress NFκB and aberrant EMT initiation to permit pancreatic progenitor differentiation.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE49132
GATA4
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Function of GATA factors in the adult mouse liver.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE51478
Transcriptome profiling of GATA4,6 double depleted hepatocytes
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Analysis of changes in gene expression following hepatocyte specific deletion of GATA4 and GATA6 in adult mice. Results showed that the subset of differentially expressed genes had liver specific ontologies.

Publication Title

Function of GATA factors in the adult mouse liver.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE49130
Transcriptome profiling of GATA4 depleted hepatocytes
  • organism-icon Mus musculus
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Analysis of changes in gene expression following hepatocyte specific deletion of GATA4 in adult mice. Results showed that the subset of differentially expressed genes had liver specific ontologies.

Publication Title

Function of GATA factors in the adult mouse liver.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE18393
Gene expression of colon from control or VilCre;Ihhflox/flox mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Ihh expression is required for intestinal stem cell niche development.

Publication Title

Indian hedgehog regulates intestinal stem cell fate through epithelial-mesenchymal interactions during development.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE55560
Hippo Pathway Activity Influences Liver Cell Fate
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Hippo pathway activity influences liver cell fate.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE55558
Analysis of Liver Progenitor Cells Generated from Yap Expression [Set 1]
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Hippo signaling is highly associated with activity in the stem cell compartment of many epithelial tissues. In this study, we examined if Hippo signaling inhibition (by inducing Yap expression) could convert differentiated cells into a progenitor like phenotype. Organoid cells derived from mouse livers under various conditions, wild-type, Yap ON (Plus Dox), and Yap ON then OFF (Minus Dox) was examined.

Publication Title

Hippo pathway activity influences liver cell fate.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE47174
Genome-wide mRNA expression profiles of FACS-enriched rat beta cells freshly isolated from neonatal (postnatal day 2-3) and adult (10 weeks-old) Wistar rats
  • organism-icon Rattus norvegicus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

The lower glucose-responsiveness of neonatal beta cells is generally considered a sign of endocrine immaturity. We compared mRNA profiles of neonatal and 10-weeks old rat beta cells to see how their gene expression changes with functional maturation. Neonatal beta cells showed a lower glucose-inducible increment in insulin production than adult cells. This was in part explained by basal protein synthetic hyperactivity of neonatal cells: while at 2.5mM glucose 80% of neonatal beta cells were recruited into active protein synthesis, 10 mM glucose was required to achieve a similar fraction of active adult beta cells. Besides this progressive recruitment, glucose exerted in both age groups an additional amplifying effect in the recruited cells, but clearly more so in adult beta cells that showed a higher maximal synthetic capacity/cell. Neonatal beta cells balanced an advanced endocrine differentiation as judged by their mRNA expression of conserved beta cell marker genes, with higher expression of genes involved in cell cycle and development. One example, Delta-like 1 homolog (DLK1) was used to investigate if neonatal beta cells with basal hyperactivity corresponded to a more immature subset, as marked by high DLK1. Neonatal pancreas contained distinct subsets of DLK1high and DLK1low insulin-expressing cells, but both showed equal hyperactivity. We conclude that neonatal beta cells combine advanced endocrine maturation with traits of residual developmental immaturity. If DLK1 is used as marker for the latter, the basal hyperactivity which proved to be a cardinal feature of neonatal beta cells is not a direct reflection of their residual immaturity.

Publication Title

Functional characteristics of neonatal rat β cells with distinct markers.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE55559
Analysis of Liver Progenitor Cells Generated from Yap Expression [Set 2]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Hippo signaling is highly associated with activity in the stem cell compartment of many epithelial tissues. In this study, we examined if Hippo signaling inhibition (by inducing Yap expression) could convert differentiated cells into a progenitor like phenotype.

Publication Title

Hippo pathway activity influences liver cell fate.

Sample Metadata Fields

Specimen part, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact