refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 864 results
Sort by

Filters

Technology

Platform

accession-icon GSE57115
Placental gene expression in intestinal nematode-infected and protein-deficient mice
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Protein deficiency and intestinal parasite infection during pregnancy impair fetal growth through passage of signals from the maternal environment which signal impairment of fetal growth. The placenta is an important regulator of the transfer of these signals through differential expression of key placental genes. We used microarrays to examine placental gene expression responses to maternal protein deficiency (6% vs. 24% protein) and Heligmosomoides bakeri infection.

Publication Title

Expression of growth-related genes in the mouse placenta is influenced by interactions between intestinal nematode (Heligmosomoides bakeri) infection and dietary protein deficiency.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE134381
Metabolomics, Transcriptomic and Genetic - Integrative Analysis Reveals Important Roles of Adenosine Diphosphate in Haemostasis and Platelet Activation in Non-Small Cell Lung Cancer
  • organism-icon Homo sapiens
  • sample-icon 74 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

Transcriptomic and genetic profiles of tumours and matched normal tissues could help to identify important factors and potential therapeutic targets that contribute to tumorigenesis. We integrated omics profiles in tumours and matched adjacent normal tissues of patients with LUSC (N = 20) and LUAD (N = 17)

Publication Title

Metabolomic, transcriptomic and genetic integrative analysis reveals important roles of adenosine diphosphate in haemostasis and platelet activation in non-small-cell lung cancer.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE15102
Targetting CD24 for treatment of colorectal and pancreatic cancer by monoclonal antibodies or siRNA
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

CD24 is a potential oncogene reported to be overexpressed in a large variety of human malignancies. We have shown that CD24 is overexpressed in 90% of colorectal tumors at a fairly early stage in the multistep process of carcinogenesis. Anti-CD24 monoclonal antibodies (mAb) induce a significant growth inhibition in colorectal and pancreatic cancer cell lines that express the protein. This study is designed to investigate further the effects of CD24 down-regulation using mAb or small interfering RNA in vitro and in vivo. Western blot analysis showed that anti-CD24 mAb induced CD24 protein down-regulation through lysosomal degradation. mAb augmented growth inhibition in combination with five classic chemotherapies. Xenograft models in vivo showed that tumor growth was significantly reduced in mAb-treated mice. Similarly, stable growth inhibition of cancer cell lines was achieved by down-regulation of CD24 expression using short hairpin RNA (shRNA). The produced clones proliferated more slowly, reached lower saturation densities, and showed impaired motility. Most importantly, down-regulation of CD24 retarded tumorigenicity of human cancer cell lines in nude mice. Microarray analysis revealed a similar pattern of gene expression alterations when cells were subjected to anti-CD24 mAb or shRNA. Genes in the Ras pathway, mitogenactivated protein kinase, or BCL-2 family and others of oncogenic association were frequently down-regulated. As a putative new oncogene that is overexpressed in gastrointestinal malignancies early in the carcinogenesis process, CD24 is a potential target for early intervention in the prevention and treatment of cancer.

Publication Title

Targeting CD24 for treatment of colorectal and pancreatic cancer by monoclonal antibodies or small interfering RNA.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE40904
Gene expression analysis for Il13Ra2-positive and IL13Ra2-negative glioma cell lines
  • organism-icon Homo sapiens
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Affymetrix expression profiling was used to evaluate the association between IL13R2 expression, and mesenchymal, proneural, classical and neural signature genes expression for glioma subclasses defined by Verhaak et al (Cancer Cell; 2010).

Publication Title

Glioma IL13Rα2 is associated with mesenchymal signature gene expression and poor patient prognosis.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE11418
Passage dependent gene expression in normal human dermal fibroblasts
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Human umbilical vein endothelial cells (HUVECs) formed capillary structures when co-cultured with normal human dermal fibroblasts (NHDFs). HUVEC competence and NHDF supportiveness of cord formation were found to be highly cell-passage dependent with the early passage cells forming more angiogenic cord structures. We thus profiled gene expression in NHDFs with different passages to understand the molecular mechanisms underlying the in vitro angiogenesis control.

Publication Title

Developing and applying a gene functional association network for anti-angiogenic kinase inhibitor activity assessment in an angiogenesis co-culture model.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP172805
Single Cell RNA sequence data from a human ovarian cancer sample
  • organism-icon Homo sapiens
  • sample-icon 89 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Purpose: Investigate cellular heterogeneity in a fresh human ovarian cancer tissue sample Methods: Enzymatic digestion of fresh tissue sample collected from the operating room to produce single cell suspension. Cells were labelled with fluorescent antibodies to CD3, CD14, CD19, CD20, CD56 and FACS sorted to remove immune cells. The negative population was used for sequencing. Single cells were processed using the Fluidigm C1 Chip to generate barcoded cDNA for each cell. Amplifed cDNA was sequenced using an Illumina HiSeq 2500 machine. Results: Single cell RNA sequence data was obtained for 92 cells and a "bulk" sample of 1000 cells. 26 cells were removed from analysis due to quality control standards. The remaining 66 cells and the bulk sample were analyzed. Conclusion: Single cell RNA sequence analysis reveals heterogeneity in gene expression in cells harvested from a high grade ovarian serous cancer Overall design: A single cell suspension generated from a fresh high grade serous ovarian cancer sample was run through two Fluidigm C1 chips to isolate single cells and produce barcoded cDNA. Sequencing was performed in a single lane of an Illumina HiSeq 2500 machine. 92 single cells were sequenced and 1 bulk sample was sequenced, for a total of 93 samples.

Publication Title

Single cell sequencing reveals heterogeneity within ovarian cancer epithelium and cancer associated stromal cells.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE99021
Blood transcriptional signatures for disease progression in a rat model of osteoarthritis
  • organism-icon Rattus norvegicus
  • sample-icon 50 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 2.1 ST Array (ragene21st)

Description

Biomarkers of osteoarthritis (OA) that can accurately diagnose the disease at the earliest stage would significantly support efforts to develop treatments for prevention and early intervention. The different stages of disease progression are described by the complex pattern of transcriptional regulations. The dynamics in pattern alterations were monitored in each individual animal during the time-course of OA progression.

Publication Title

Blood Transcriptional Signatures for Disease Progression in a Rat Model of Osteoarthritis.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE12991
Isolation of single miRNA-expressing cells from zebrafish embryos
  • organism-icon Danio rerio
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Zebrafish Genome Array (zebrafish)

Description

The goal of the project was to isolate single miRNA-expressing cells labelled by GFP reporter genes under the control of endogenous miRNA promoters and analyze expression levels of miRNA target genes in these cells. GFP-positive miRNA-expressing cells and GFP-negative cells from the rest of the embryos were purified at the same developmental stage to the cellular resolution using fluorescent activated cell sorting (FACS). Focus was on regulation by miR-206 and miR-133 in the developing somites and miR-124 in the developing central nervous system. Comparison of wild-type embryos and those lacking miRNAs revealed predicted

Publication Title

Coherent but overlapping expression of microRNAs and their targets during vertebrate development.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP009246
High-resolution profiling and analysis of viral and host small RNAs during human cytomegalovirus infection
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

Small RNA deep sequencing analysis was conducted on primary human fibroblasts infected with human cytomegalovirus (HCMV). HCMV-encoded miRNAs accumulated to ~20% of the total smRNA population at late stages of infection, and our analysis led to improvements in viral miRNA annotations and identification of novel HCMV miRNAs. Through crosslinking and immunoprecipitation of Argonaute-bound RNAs from infected cells, followed by high-throughput sequencing (Ago CLIP-seq), we obtained direct evidence for incorporation of all HCMV miRNAs into the endogenous host silencing machinery. Additionally, significant upregulation was observed during infection for a host miRNA cluster containing miR-96, miR-182 and miR-183. We also identified novel non-miRNA forms of virus-derived smRNAs, revealing greater complexity within the smRNA population during HCMV infection. Overall design: High-throughput profiling of smRNAs, Ago1-, and Ago2-associated miRNAs from HCMV-infected fibroblast cells. Wild-type HCMV Towne (Genbank FJ616285.1) was used for these studies.

Publication Title

High-resolution profiling and analysis of viral and host small RNAs during human cytomegalovirus infection.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon SRP059364
Histone H3.3 maintains genome integrity during mammalian development
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Histone H3.3 is a highly conserved histone H3 replacement variant in metazoans, and has been implicated in many important biological processes including cell differentiation and reprogramming. Germline and somatic mutations in H3.3 genomic incorporation pathway components, or in H3.3 encoding genes, have been associated with human congenital diseases and cancers, respectively. However, the role of H3.3 in mammalian development remains unclear. To address this question, we generated H3.3 null mouse models through classical genetic approaches. We found H3.3 plays an essential role in mouse development. Complete depletion of H3.3 leads to developmental retardation and early embryonic lethality. At the cellular level, H3.3 loss triggers cell cycle suppression and cell death. Surprisingly, H3.3 depletion does not dramatically disrupt gene regulation in the developing embryo. Instead, H3.3 depletion causes dysfunction of heterochromatin structures at telomeres, centromeres and pericentromeric regions of chromosomes leading to mitotic defects. The resulting karyotypical abnormalities and DNA damage lead to p53 pathway activation. In summary, our results reveal that an important function of H3.3 is to support chromosomal heterochromatic structures, thus maintaining genome integrity during mammalian development. Overall design: RNA-seq in embryos at E10.5 comparing 3 samples with the following genotype Trp53-/-; H3f3afl/-; H3f3bfl/-; Sox2-CreTg/0 to three samples with the following genotype Trp53-/-; H3f3afl/+; H3f3bfl/+; Sox2-CreTg/0

Publication Title

Histone H3.3 maintains genome integrity during mammalian development.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact