refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 864 results
Sort by

Filters

Technology

Platform

accession-icon GSE104197
Trabectedin is a novel chemotherapy agent for diffuse large B cell lymphoma
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Assess the efficacy of trabectedin in two DLBCL cell lines

Publication Title

Trabectedin is a novel chemotherapy agent for diffuse large B cell lymphoma.

Sample Metadata Fields

Treatment, Time

View Samples
accession-icon GSE76757
Combination of the MEK inhibitor pimasertib with BTK or PI3K-delta inhibitors is active in pre-clinical models of aggressive lymphomas
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

assess the efficacy of Pimasertib to characterize its mechanism of action

Publication Title

Combination of the MEK inhibitor pimasertib with BTK or PI3K-delta inhibitors is active in preclinical models of aggressive lymphomas.

Sample Metadata Fields

Cell line, Treatment, Time

View Samples
accession-icon SRP119119
Gene expression profiles of migrating cell types Drosophila embryogenesis
  • organism-icon Drosophila melanogaster
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Cell migration is an instrumental process that ensures cells are properly positioned to support the specification of distinct tissue types during development. To provide insight, we used fluorescence activated cell sorting (FACS) to isolate two migrating cell types from the Drosophila embryo: caudal visceral mesoderm (CVM) cells, precursors of longitudinal muscles of the gut, and hemocytes (HCs), the Drosophila equivalent of blood cells. ~350 genes were identified from each of the sorted samples using RNA-seq, and in situ hybridization was used to confirm expression within each cell type or, alternatively, within other interacting, co-sorted cell types. To start, the two gene expression profiling datasets were compared to identify cell migration regulators that are potentially generally-acting. 73 genes were present in both CVM cell and HC gene expression profiles, including the transcription factor zinc finger homeodomain-1 (zfh1). Comparisons with gene expression profiles of Drosophila border cells that migrate during oogenesis had a more limited overlap, with only the genes neyo (neo) and singed (sn) found to be expressed in border cells as well as CVM cells and HCs, respectively. Neo encodes a protein with Zona pellucida domain linked to cell polarity, while sn encodes an actin binding protein. Tissue specific RNAi expression coupled with live in vivo imaging was used to confirm cell-autonomous roles for zfh1 and neo in supporting CVM cell migration, whereas previous studies had demonstrated a role for Sn in supporting HC migration. In addition, comparisons were made to migrating cells from vertebrates. Seven genes were found expressed by chick neural crest cells, CVM cells, and HCs including extracellular matrix (ECM) proteins and proteases. In summary, we show that genes shared in common between CVM cells, HCs, and other migrating cell types can help identify regulators of cell migration. Our analyses show that neo in addition to zfh1 and sn studied previously impact cell migration. This study also suggests that modification of the extracellular milieu may be a fundamental requirement for cells that undergo cell streaming migratory behaviors. Overall design: Examination of genes expressed in two migrating cell populations (CVM and hemocytes) during their active cell migration and the rest of cell types of corresponding stages

Publication Title

Comparative analysis of gene expression profiles for several migrating cell types identifies cell migration regulators.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE94670
PQR309 is a novel dual PI3K/mTOR inhibitor with antitumor pre-clinical activity in lymphomas as single agent and in combination
  • organism-icon Homo sapiens
  • sample-icon 84 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

assess the efficacy of dual PI3K/mTOR inhibitor with anti-lymphoma activity as single agent and in combination

Publication Title

PQR309 Is a Novel Dual PI3K/mTOR Inhibitor with Preclinical Antitumor Activity in Lymphomas as a Single Agent and in Combination Therapy.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE94669
61 lymphoma cell lines gene expression profiles
  • organism-icon Homo sapiens
  • sample-icon 61 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

assess the gene expression profiling of 61 cell lines

Publication Title

PQR309 Is a Novel Dual PI3K/mTOR Inhibitor with Preclinical Antitumor Activity in Lymphomas as a Single Agent and in Combination Therapy.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE79831
Comparison of wild type mouse lung cancer cell lines to transfected cell lines with Spp1 sh RNA
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

We compared different mouse cancer cell lines to identify their unique cell signatures.

Publication Title

Tumor-derived osteopontin isoforms cooperate with TRP53 and CCL2 to promote lung metastasis.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE77206
Methyl-CpG-Binding Protein MBD2 plays a critical role in maintenance and spread of DNA methylation of CpG islands and shores in cancer
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Methyl-CpG-binding protein MBD2 plays a key role in maintenance and spread of DNA methylation at CpG islands and shores in cancer.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE77187
Methyl-CpG-Binding Protein MBD2 plays a critical role in maintenance and spread of DNA methylation of CpG islands and shores in cancer (expression)
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Cancer is characterised by DNA hypermethylation and gene silencing of CpG island-associated promoters, including tumour suppressor genes The methyl-CpG-binding domain (MBD) family of proteins bind to methylated DNA and can aid in the meditation of gene silencing by interaction with histone deacetylases and histone methyltransferases. However the mechanisms responsible for eliciting CpG island hypermethylation in cancer, and the potential role that MBD may proteins play in modulation of the methylome remain unclear. Our previous work demonstrated that MBD2 preferentially binds to the hypermethylated GSTP1 promoter CpG island in prostate cancer cells. Here, we use functional genetic approaches to investigate if MBD2 plays an active role in promoting DNA methylation. First, we show that loss of MBD2 results in inhibition of both maintenance and spread of de novo methylation of a transfected construct containing the GSTP1 promoter CpG island in prostate cancer cells and Mbd2-/- mouse fibroblasts. De novo methylation was rescued by transient expression of Mbd2 in Mbd2-/- cells. Second, we show that MBD2 depletion triggers significant hypomethylation genome-wide in prostate cancer cells with concomitant loss of MBD2 binding at promoter and enhancer regulatory regions. Finally, CpG islands and shores that become hypomethylated after MBD2 depletion in LNCaP cancer cells show significant hypermethylation in clinical prostate cancer, highlighting a potential active role of MBD2 in promoting cancer specific hypermethylation. Importantly, co-immunoprecipiation of MBD2 reveals that MBD2 associates with DNA methyltransferase (DNMT) enzymes 1 and 3A. Together our results demonstrate that MBD2 plays a critical role in rewriting the cancer methylome at specific regulatory regions.

Publication Title

Methyl-CpG-binding protein MBD2 plays a key role in maintenance and spread of DNA methylation at CpG islands and shores in cancer.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP013724
Expression Analysis of Normal and Cancerous Prostate Cells
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

Strand-specific RNA sequencing was done on a normal and a cancer cell line to examine how isoforms are used differently between these two states. Overall design: One PrEC sample, a normal cell line. One LNCaP sample, a cancer cell line.

Publication Title

Regional activation of the cancer genome by long-range epigenetic remodeling.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP013725
Mapping of Transcription Start Sites of Normal and Cancerous Prostate Cells
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

Capped analysis of gene expression (CAGE) sequencing was done on a normal and a cancer cell line to examine how promoter usage changes between these two states. Overall design: One PrEC sample, a normal cell line. One LNCaP sample, a cancer cell line.

Publication Title

Regional activation of the cancer genome by long-range epigenetic remodeling.

Sample Metadata Fields

Cell line, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact