Precise regulation of stem cell self-renewal and differentiation properties is essential for tissue homeostasis. Using the adult Drosophila intestine to study molecular mechanisms controlling stem cell properties, we identify the gene split-ends (spen) in a genetic screen as a novel regulator of intestinal stem cell fate. Spen family genes encode conserved RNA recognition motif-containing proteins that are reported to have roles in RNA splicing and transcriptional regulation. We demonstrate that spen loss of function in intestinal stem cells results in an abnormal increase in the number of stem cell-like cells and that Spen acts to control early commitment events of the stem cells. Using two-color cell sorting of stem cells and their daughters, we characterize spen-dependent changes in RNA abundance and exon usage, and find potential key regulators downstream of spen. Our work identifies spen as an important regulator of adult stem cells in the Drosophila intestine, provides new insight to Spen-family protein functions, and may also shed light on Spen's mode of action in other developmental contexts. Overall design: Three biological replicates were sequenced per each 4 conditions
Spen limits intestinal stem cell self-renewal.
Sex, Age, Specimen part, Subject
View SamplesWe used RNA-seq to compare the gene expression profiles of adult mouse prostate luminal cells and luminal cells that have the androgen receptor (AR) gene deleted. Our analyses show that AR-null luminal cells have altered expression levels of genes involved in cell-matrix adhesion, cytoskeleton regulation, and MAPK and TGF-beta signaling pathways. These results are consistent with our finding that AR-null luminal cells have abnormal cell morphology and loss of cell polarity. Overall design: Lineage marked wild-type luminal cells and AR-deleted luminal cells were flow-sorted based on YFP fluorescence respectively, and their expression profiles were analyzed by RNA-seq.
Dissecting cell-type-specific roles of androgen receptor in prostate homeostasis and regeneration through lineage tracing.
Specimen part, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Definition of the landscape of promoter DNA hypomethylation in liver cancer.
Specimen part, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
A common promoter hypomethylation signature in invasive breast, liver and prostate cancer cell lines reveals novel targets involved in cancer invasiveness.
Sex, Disease, Disease stage, Cell line
View SamplesExtensive loss of DNA methylation is a hallmark of cancer. The role of hypomethylation in altering gene expression in cancer cells has been poorly understood. Hepatic cellular carcinoma (HCC) is one of the most common human cancers. We use HCC as a model to investigate hypomethylation in cancer by a combination of methylated DNA immunoprecipitation and hybridization with comprehensive promoter arrays. We identify approximately 2,800 promoters that are hypomethylated in tumor samples. The hypomethylated promoters appear in clusters across the genome suggesting a high-level organization behind the epigenomic changes in cancer. The genes whose promoters are demethylated are mainly involved in cell growth, cell adhesion and communication, signal transduction, mobility and invasion; functions that are essential for cancer progression and metastasis. Previous studies suggested that MBD2 was involved in demethylation of uPA and MMP2 genes in human breast and prostate cancer cell lines. We extend these results here showing that whereas MBD2 depletion in normal liver cells has little or no effect, its depletion in the human hepatocellular carcinoma cell line HepG2 and the adenocarcinoma cell line SkHep1 results in suppression of cell growth, anchorage-independent growth and invasiveness, as well as an increase in promoter methylation and silencing of several of the genes that are hypomethylated in tumors. Our studies establish for the first time the rules governing hypomethylation of promoters in liver cancer and define the potential functional role of hypomethylation in cancer.
Definition of the landscape of promoter DNA hypomethylation in liver cancer.
Specimen part, Subject
View SamplesCancer invasion and metastasis is the most morbid aspect of cancer and is governed by different cellular mechanisms than those driving the deregulated growth of tumors. We addressed here the question of whether a common DNA methylation signature of invasion exists in cancer cells from different origins that differentiates invasive from noninvasive cells. We identified a common DNA methylation signature consisting of hyper- and hypomethylation and determined the overlap of differences in DNA methylation with differences in mRNA expression using expression array analyses. A pathway analysis reveals that the hypomethylation signature includes some of the major pathways that were previously implicated in cancer migration and invasion such as TGF beta and ERBB2 triggered pathways. The relevance of these hypomethylation events in human tumors was validated by identification of the signature in several publicly available databases of human tumor transcriptomes. We shortlisted novel invasion promoting candidates and tested the role of four genes from the list C11orf68, G0S2, SHISA2 and TMEM156 in invasiveness using siRNA depletion. Importantly these genes are upregulated in human cancer specimens as determined by immunostaining of human normal and cancer breast, liver and prostate tissue arrays. Since these genes are activated in cancer they constitute a group of targets for specific pharmacological inhibitors of cancer invasiveness.
A common promoter hypomethylation signature in invasive breast, liver and prostate cancer cell lines reveals novel targets involved in cancer invasiveness.
Sex, Disease, Disease stage, Cell line
View SamplesC/EBPa induces transdifferentiation of B cells into macrophages at high efficiencies and enhances reprogramming into induced pluripotent stem cells (iPSCs) when co-expressed with Oct4, Sox2, Klf4 and Myc (OSKM). However, how C/EBPa accomplishes these effects is unclear. We now found that transient C/EBPa expression followed by OSKM activation induces a 100 fold increase in iPSC reprogramming efficiency, involving 95% of the cells. During this conversion pluripotency and epithelial-mesenchymal transition genes become dramatically up-regulated and 60% of the cells express Oct4 within 2 days. C/EBPa acts as a pathbreaker since it transiently makes the chromatin of pluripotency genes more accessible to DNase I. It also induces the expression of the dioxygenase Tet2 and promotes its translocation to the nucleus where it binds to regulatory regions of pluripotency genes that become demethylated following OSKM induction. In line with these findings, overexpression of Tet2 enhances OSKM-induced B cell reprogramming. Since the enzyme is also required for efficient C/EBPa-induced immune cell conversion, our data suggest that Tet2 provides a mechanistic link between iPSC reprogramming and B cell transdifferentiation. The rapid iPS reprogramming approach described should help to fully elucidate the process and has potential clinical applications. Overall design: Change in gene expression, comparing primary B-cells treated with estradiol for 18h to induce C/EBPa to untreated cells.
Time-resolved gene expression profiling during reprogramming of C/EBPα-pulsed B cells into iPS cells.
No sample metadata fields
View SamplesNoncoding RNAs (ncRNAs) play increasingly appreciated gene-regulatory roles. Here, we describe a regulatory network centered on four ncRNAs—a long ncRNA, a circular RNA, and two microRNAs—using gene editing in mice to probe the molecular consequences of disrupting key components of this network. The long ncRNA Cyrano uses an extensively paired site to miR-7 to trigger destruction of this microRNA. Cyrano-directed miR-7 degradation is much more efficient than previously described examples of target-directed microRNA degradation, which come primarily from studies of artificial and viral RNAs. By reducing miR-7 levels, Cyrano prevents repression of miR-7–targeted mRNAs and enables the accumulation of Cdr1as, a circular RNA known to regulate neuronal activity. Without Cyrano, excess miR-7 causes cytoplasmic destruction of Cdr1as, in part through enhanced slicing of Cdr1as by a second miRNA, miR-671. Thus, several types of ncRNAs can collaborate to establish a sophisticated regulatory network. Overall design: mRNA expression profiling by RNA-seq of 10 tissues from wild-type (WT) and Cyrano–/– (CyrKO) mice. This study consists of 96 polyA-selected unstranded Tru-seq libraries prepared from 4–6 biological replicates per genotype for each tissue.
A Network of Noncoding Regulatory RNAs Acts in the Mammalian Brain.
Sex, Age, Specimen part, Cell line, Subject
View SamplesNoncoding RNAs (ncRNAs) play increasingly appreciated gene-regulatory roles. Here, we describe a regulatory network centered on four ncRNAs—a long ncRNA, a circular RNA, and two microRNAs—using gene editing in mice to probe the molecular consequences of disrupting key components of this network. The long ncRNA Cyrano uses an extensively paired site to miR-7 to trigger destruction of this microRNA. Cyrano-directed miR-7 degradation is much more efficient than previously described examples of target-directed microRNA degradation, which come from studies of artificial and viral RNAs. By reducing miR-7 levels, Cyrano prevents repression of miR-7–targeted mRNAs and enables the accumulation of Cdr1as, a circular RNA known to regulate neuronal activity. Without Cyrano, excess miR-7 causes cytoplasmic destruction of Cdr1as, in part through enhanced slicing of Cdr1as by a second miRNA, miR-671. Thus, several types of ncRNAs can collaborate to establish a sophisticated regulatory network. Overall design: mRNA expression profiling by RNA-seq of cerebellum and cortex from wild-type (WT), Cyrano miR-7 site mutant (CyrMut), Cyrano–/– (CyrKO), and Mir7a1–/–; Mir7b–/– (Mir7DKO) mice. This study consists of 33 polyA-selected stranded NEXTflex libraries prepared from 3-4 biological replicates for each tissue and each genotype. To minimize batch effects, libraries for wild-type tissues were prepared and sequenced for each experiment and only intra-experiment comparisons were made.
A Network of Noncoding Regulatory RNAs Acts in the Mammalian Brain.
Sex, Age, Specimen part, Cell line, Subject
View SamplesWe have discovered subsets of axon guidance molecules and transcription factors that are enriched in specific subsets of olfactory sensory neurons. We have demonstrated guidance activity for three of the candidate axon guidance genes we identified, suggesting that this approach is an efficient method for characterizing guidance systems relevant to olfactory axon targeting. Overall design: Single-cell RNASeq of OMP-expressing olfactory sensory neurons was performed by capture on Fluidigm-C1 followed by sequencing on Illumina HiSeq2500
Coordination of olfactory receptor choice with guidance receptor expression and function in olfactory sensory neurons.
No sample metadata fields
View Samples