refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1076 results
Sort by

Filters

Technology

Platform

accession-icon SRP097877
An RNA-seq dataset for studies of gene expression variation in the MAGIC line resource of Arabidopsis thaliana
  • organism-icon Arabidopsis thaliana
  • sample-icon 199 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

To understand the population genetics of structural variants (SVs), and their effects on phenotypes, we developed an approach to mapping SVs, particularly transpositions, segregating in a sequenced population, and which avoids calling SVs directly. The evidence for a potential SV at a locus is indicated by variation in the counts of short-reads that map anomalously to the locus. These SV traits are treated as quantitative traits and mapped genetically, analogously to a gene expression study. Association between an SV trait at one locus and genotypes at a distant locus indicate the origin and target of a transposition. Using ultra-low-coverage (0.3x) population sequence data from 488 recombinant inbred Arabidopsis genomes, we identified 6,502 segregating SVs. Remarkably, 25% of these were transpositions. Whilst many SVs cannot be delineated precisely, PCR validated 83% of 44 predicted transposition breakpoints. We show that specific SVs may be causative for quantitative trait loci for germination, fungal disease resistance and other phenotypes. Further we show that the phenotypic heritability attributable to sequence anomalies differs from, and in the case of time to germination and bolting, exceeds that due to standard genetic variation. Gene expression within SVs is also more likely to be silenced or dysregulated, as inferred from RNA-seq data collected from a subset of just over 200 of the MAGIC lines. This approach is generally applicable to large populations sequenced at low-coverage, and complements the prevalent strategy of SV discovery in fewer individuals sequenced at high coverage. Overall design: 209 samples consisting of different inbred lines from the Multiparent Advance Generation InterCross (MAGIC) population in the reference plant, Arabidopsis thaliana. For each sample, RNA was collected from the aerial shoot at the 4th true leaf stage, and Illumina mRNA-seq libraries were constructed (a single library was constructed with each line; that is, each MAGIC line is represented by one biological replicate). Using these libraries, which were non-stranded, paired-end 100 bp RNA-seq Illumina reads were generated for each sample, and used to quantify gene expresison in each MAGIC line. The resulting expression phenotypes are suitable for describing the impacts of genetic variation in the MAGIC line founders on the control of gene expression.

Publication Title

Genomic Rearrangements in <i>Arabidopsis</i> Considered as Quantitative Traits.

Sample Metadata Fields

Subject

View Samples
accession-icon SRP095855
A protective function of IL-22BP in acute liver injury
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Acute liver injury is a critical life-threatening event. Common causes are infections, intoxication, and ischemic conditions. The cytokine Interleukin 22 (IL-22) has been implicated in this process. However, the role of IL-22 during acute liver damage is controversial, since both protective and pathogenic properties have been reported. IL-22 binding protein (IL-22BP, IL-22Ra2), a soluble endogenous inhibitor of IL-22, is able to regulate IL-22 activity, and thus might explain some of the controversial findings. Since the role of IL-22BP in liver injury is unknown, we used Il22bp deficient mice and mouse models for acute liver damage to address this point. We found that Il22bp deficient mice were more susceptible to ischemia- and acetaminophen- induced liver damage. Deficiency of Il22bp caused increased hepatic damage and delayed liver regeneration. Using an unbiased approach, we found that IL-22, if uncontrolled in Il22bp deficient mice, induced Cxcl10 expression by hepatocytes, thereby recruiting inflammatory CD11b+Ly6C+ monocytes into the liver upon liver damage. Accordingly, neutralization of Cxcl10 reversed the increased disease susceptibility of Il22bp deficient mice. In conclusion, our data suggest dual functions of IL-22 in acute liver damage, and highlight the need to control IL-22 activity via IL-22BP. Overall design: RNA sequencing of RNA isolated from liver tissue from mice that underwent liver reperfusion treatment (IR) or sham surgery, in triplicate for three genotypes (Wt, Il22-/- and Il22bp-/-).

Publication Title

A Protective Function of IL-22BP in Ischemia Reperfusion and Acetaminophen-Induced Liver Injury.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon GSE87807
Exit from HSC dormancy is controlled via vitamin A/retinoic acid (II)
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Identification of the role of retinoic acid on the activation of the dHSCs

Publication Title

Vitamin A-Retinoic Acid Signaling Regulates Hematopoietic Stem Cell Dormancy.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE56747
Antidiabetic Rosiglitazone Remodels the Adipocyte Transcriptome by Redistributing Transcription to PPARg-Driven Enhancers
  • organism-icon Mus musculus
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Anti-diabetic rosiglitazone remodels the adipocyte transcriptome by redistributing transcription to PPARγ-driven enhancers.

Sample Metadata Fields

Cell line, Treatment, Time

View Samples
accession-icon GSE56688
Antidiabetic Rosiglitazone Remodels the Adipocyte Transcriptome by Redistributing Transcription to PPARg-Driven Enhancers [Affymetrix]
  • organism-icon Mus musculus
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

Rosiglitazone (rosi) is a powerful insulin sensitizer, but serious toxicities have curtailed its widespread clinical use. Rosi functions as a high-affinity ligand for PPARg, the adipocyte-predominant nuclear receptor (NR). The classic model, involving binding of ligand to the NR on DNA, explains positive regulation of gene expression, but ligand-dependent repression is not well understood. We have now addressed this issue by studying the direct effects of rosiglitazone on gene transcription, using global run-on sequencing (GRO-seq). Rosi-induced changes in gene body transcription were pronounced after 10 minutes and correlated with steady-state mRNA levels as well as with transcription at nearby enhancers (eRNAs). Upregulated eRNAs occurred almost exclusively at PPARg binding sites, to which rosi treatment recruited the coactivator MED1. By contrast, transcriptional repression by rosi involved a loss of MED1 from eRNA sites devoid of PPARg and enriched for other TFs including AP-1 factors and C/EBPs. Thus, rosi activates and represses transcription by fundamentally different mechanisms that could inform the future development of antidiabetic drugs.

Publication Title

Anti-diabetic rosiglitazone remodels the adipocyte transcriptome by redistributing transcription to PPARγ-driven enhancers.

Sample Metadata Fields

Cell line, Treatment, Time

View Samples
accession-icon SRP165794
Molecular and functional heterogeneity of IL-10-producing CD4+ T cells [Mouse Bulk-seq]
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

IL-10 is a prototypical anti-inflammatory cytokine, which is fundamental to the maintenance of immune homeostasis, especially in the intestine. There is an assumption that cells producing IL-10 have an immunoregulatory function. However, here we report that IL-10-producing CD4+ T cells are phenotypically and functionally heterogeneous. By combining single cell transcriptome and functional analyses, we identified a subpopulation of IL-10-producing Foxp3Neg CD4+ T cells that displays regulatory activity unlike other IL-10-producing CD4+ T cells, which are unexpectedly pro-inflammatory. The combinatorial expression of co-inhibitory receptors is sufficient to discriminate IL-10-producing CD4+ T cells with regulatory function from others and to identify them across different tissues and disease models in mice and humans. These regulatory IL-10-producing Foxp3Neg CD4+ T cells have a unique transcriptional program, which goes beyond the regulation of IL-10 expression. Finally, we found that patients with Inflammatory Bowel Disease (IBD), demonstrate a deficiency in this specific regulatory T-cell subpopulation. Overall design: We carried out high troughput RNA sequencing of RNA isolated from IL-10 producing Foxp3- CD4+ T-cells, which were isolated from the spleen of mice treated with anti-CD3 antibody.

Publication Title

Molecular and functional heterogeneity of IL-10-producing CD4<sup>+</sup> T cells.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE7392
Molecular Evidence of Injury and Inflammation in Normal and Fibrotic Renal Allografts One Year Post-Transplant
  • organism-icon Homo sapiens
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Introduction. Factors contributing to kidney transplant fibrosis remain incompletely understoodparticularly in the absence of acute complications.

Publication Title

A meta-analysis of kidney microarray datasets: investigation of cytokine gene detection and correlation with rt-PCR and detection thresholds.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE97780
Molecular changes in kidney allografts after simultaneous liver-kidney compared with solitary kidney transplantation
  • organism-icon Homo sapiens
  • sample-icon 52 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

The aim of this study was to investigate correlations between early subclinical findings (10 and 90 day histology and gene expression data) and late outcomes (transplant glomerulopathy and graft loss) in positive crossmatch kidney transplants (+XMKTx).

Publication Title

Unique molecular changes in kidney allografts after simultaneous liver-kidney compared with solitary kidney transplantation.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE82337
Early Subclinical Inflammation Correlates with Outcomes in Positive Crossmatch Kidney Allografts
  • organism-icon Homo sapiens
  • sample-icon 78 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

The aim of this study was to investigate correlations between early subclinical findings (10 and 90 day histology and gene expression data) and late outcomes (transplant glomerulopathy and graft loss) in positive crossmatch kidney transplants (+XMKTx).

Publication Title

Early subclinical inflammation correlates with outcomes in positive crossmatch kidney allografts.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE22459
Fibrosis with Inflammation at One Year Predicts Transplant Functional Decline
  • organism-icon Homo sapiens
  • sample-icon 65 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We previously observed reduced graft survival for kidney transplants having interstitial fibrosis with subclinical inflammation, but not fibrosis alone, on 1-year protocol biopsy. The current study aimed to determine whether fibrosis with inflammation at 1 year is associated with renal functional decline in a low-risk transplant cohort and to characterize the nature of the inflammation. Subjects were living-donor, tacrolimus/mycophenolate-treated transplant recipients without overt risk factors for reduced graft survival (n=151). Transplants with normal histology (n=86) or fibrosis alone (n=45) on 1-year protocol biopsy had stable renal function between 1 and 5 years, while those having fibrosis with inflammation (n=20) had declining glomerular filtration rate and reduced graft survival. Immunohistochemistry confirmed increased interstitial T-cells and macrophages/dendritic cells in the fibrosis with inflammation group. Gene expression was performed on a subset of biopsies in each group and demonstrated increased expression of transcripts related to innate and cognate immunity in transplants having fibrosis with inflammation. Pathway- and pathological process-specific analyses of microarray profiles revealed that, in fibrosis with inflammation, over-expressed transcripts were enriched for potentially damaging immunological activities including Toll-like receptor signaling, antigen presentation/dendritic cell maturation, interferon gamma-inducible response, cytotoxic T lymphocyte-associated and acute rejection-associated genes. Thus, fibrosis with inflammation in 1-year protocol biopsies is associated with reduced graft survival and function and with a rejection-like gene expression signature even in recipients with no clinical risk for inferior outcome. Early interventions aimed at altering rejection-like inflammation may favor improved long-term KTx survival.

Publication Title

Fibrosis with inflammation at one year predicts transplant functional decline.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact