refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1076 results
Sort by

Filters

Technology

Platform

accession-icon GSE14325
Malignant Fibrous Histiocytoma - Pleomorphic Sarcoma, NOS -Gene expression, Histology and clinical course -A pilot study
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

This study was performed to identify gene expression differences in not otherwise specified soft tissue sarcomas (NOS, malignant fibrous histiocytomas) and correlate them to histological findings and the clinical course. RNA was isolated and differential gene expression was analysed by the microarray technique.

Publication Title

Malignant fibrous histiocytoma--pleomorphic sarcoma, NOS gene expression, histology, and clinical course. A pilot study.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE79598
Expression data from H9 human embryonic stem cells (hESCs) infected with either lentiviral non-silencing shRNA or shRUNX1, and differentiated to early mesendoderm
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

We used microarrays to detail the global program of gene expression during early hESC differentiation to mesendoderm using FBS, with and without RUNX1 depletion.

Publication Title

Transient RUNX1 Expression during Early Mesendodermal Differentiation of hESCs Promotes Epithelial to Mesenchymal Transition through TGFB2 Signaling.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE34729
Gene expression changes induced by overexpression of EVI1 in Lin- hematopoietic cells [Lin]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The transcription factor Evi1 is essential for the formation and maintenance of hematopoietic stem cells, and induces clonal dominance with malignant progression upon constitutive activation by chromosomal rearrangements or transgene integration events. To understand the immediate and adaptive response of primary murine hematopoietic cells to the transcriptional upregulation of Evi1, we developed an inducible lentiviral vector system with a robust expression switch. We found that Evi1 delays differentiation and promotes survival in myeloid culture conditions, orchestrating a battery of genes involved in stemness (Aldh1a1, Ly6a [Sca1], Abca1, Epcam, among others). Importantly, Evi1 suppresses Cyclins and Cyclin-dependent kinases (Cdk), while it upregulates Cdk inhibitors, inducing quiescence in various proliferation-inducing cytokine conditions and operating in a strictly dose-dependent manner. Hematopoietic cells with persisting Evi1-induction tend to adopt a relatively low expression level. We thus classify Evi1 as a dormancy-inducing oncogene, likely requiring epigenetic and genetic compensation for cell expansion and malignant progression.

Publication Title

Activation of Evi1 inhibits cell cycle progression and differentiation of hematopoietic progenitor cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE39103
Gene expression changes induced by overexpression of EVI1 in Lin- hematopoietic cells [EVI1_ST]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The transcription factor Evi1 is essential for the formation and maintenance of hematopoietic stem cells, and induces clonal dominance with malignant progression upon constitutive activation by chromosomal rearrangements or transgene integration events. To understand the immediate and adaptive response of primary murine hematopoietic cells to the transcriptional upregulation of Evi1, we developed an inducible lentiviral vector system with a robust expression switch. We found that Evi1 delays differentiation and promotes survival in myeloid culture conditions, orchestrating a battery of genes involved in stemness (Aldh1a1, Ly6a [Sca1], Abca1, Epcam, among others). Importantly, Evi1 suppresses Cyclins and Cyclin-dependent kinases (Cdk), while it upregulates Cdk inhibitors, inducing quiescence in various proliferation-inducing cytokine conditions and operating in a strictly dose-dependent manner. Hematopoietic cells with persisting Evi1-induction tend to adopt a relatively low expression level. We thus classify Evi1 as a dormancy-inducing oncogene, likely requiring epigenetic and genetic compensation for cell expansion and malignant progression.

Publication Title

Activation of Evi1 inhibits cell cycle progression and differentiation of hematopoietic progenitor cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP066387
Histone H3 lysine 4 acetylation-methylation dynamics define breast cancer subtypes [RNA-seq]
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq1500

Description

The onset and progression of breast cancer are linked to genetic and epigenetic changes that alter the normal programming of cells. Epigenetic modifications of DNA and histones contribute to chromatin structure that results in the activation or repression of gene expression. Several epigenetic pathways have been shown to be highly deregulated in cancer cells. Targeting specific histone modifications represents a viable strategy to prevent oncogenic transformation, tumor growth or metastasis. Methylation of histone H3 lysine 4 has been extensively studied and shown to mark genes for expression; however this residue can also be acetylated and the specific function of this alteration is less well known. To define the relative roles of histone H3 methylation (H3K4me3) and acetylation (H3K4ac) in breast cancer, we determined genomic regions enriched for both marks in normal-like (MCF10A), transformed (MCF7) and metastatic (MDA-MB-231) cells using a genome-wide ChIP-Seq approach. Our data revealed a genome-wide gain of H3K4ac associated with both early and late breast cancer cell phenotypes, while gain of H3K4me3 was predominantly associated with late stage cancer cells. Enrichment of H3K4ac was overrepresented at promoters of genes associated with cancer-related phenotypic traits, such as estrogen response and epithelial-to-mesenchymal transition pathways. Our findings highlight an important role for H3K4ac in predicting epigenetic changes associated with early stages of transformation. In addition, our data provide a valuable resource for understanding epigenetic signatures that correlate with known breast cancer-associated oncogenic pathways. Overall design: RNA-Seq of cell lines MCF10A, MCF7 and MDA-MB-231.

Publication Title

Histone H3 lysine 4 acetylation and methylation dynamics define breast cancer subtypes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE54014
Genomic occupancy of Runx2 with global expression profiling identifies a novel dimension to the control of osteoblastogenesis
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Genomic occupancy of Runx2 with global expression profiling identifies a novel dimension to control of osteoblastogenesis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE53982
Runx2-mediated gene regulation is affected by its genomic occupancy
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Osteogenesis is a highly regulated developmental process and continues during the turnover and repair of mature bone. Runx2, the master regulator of osteoblastogenesis, directs a transcription program essential for bone formation through both genetic and epigenetic mechanisms. While individual Runx2 gene targets have been identified, further insights into the broad spectrum of Runx2 functions required for osteogenesis are needed. By performing genome-wide characterization of Runx2 binding at the three major stages of osteoblast differentiation: proliferation, matrix deposition and mineralization, we identified Runx2-dependent regulatory networks driving bone formation. Using chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-Seq) over the course of these stages, we discovered close to 80,000 significantly enriched regions of Runx2 binding throughout the mouse genome. These binding events exhibited distinct patterns during osteogenesis, and were associated with proximal promoters as well as a large percentage of Runx2 occupancy in non-promoter regions: upstream, introns, exons, transcription termination site (TTS) regions, and intergenic regions. These peaks were partitioned into clusters that are associated with genes in complex biological processes that support bone formation. Using Affymetrix expression profiling of differentiating osteoblasts depleted of Runx2, we identified novel Runx2 targets including Ezh2, a critical epigenetic regulator; Crabp2, a retinoic acid signaling component; Adamts4 and Tnfrsf19, two remodelers of extracellular matrix. We demonstrated by luciferase assays that these novel biological targets are regulated by Runx2 occupancy at non-promoter regions. Our data establish that Runx2 interactions with chromatin across the genome reveal novel genes, pathways and transcriptional mechanisms that contribute to the regulation of osteoblastogenesis.

Publication Title

Genomic occupancy of Runx2 with global expression profiling identifies a novel dimension to control of osteoblastogenesis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP049208
The histone methyltransferase Setd8 represses Gata2 expression and regulates erythroid maturation
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

The chromatin modifying enzymes that drive the erythroid-specific transcription program are incompletely understood. Setd8 is the sole histone methyltransferase in mammals capable of generating mono-methylated histone H4 lysine 20 (H4K20me1) and is expressed at significantly higher levels in erythroid cells than any other cell- or tissue- type, suggesting that Setd8 has an erythroid-specific function. To test this hypothesis, stable knockdown of Setd8 was established in extensively self-renewing erythroblasts (ESREs), a well-characterized, non-transformed, model of erythroid maturation. Setd8 knockdown impaired erythroid maturation, characterized by a delay in hemoglobin accumulation, larger cell area, persistent kit expression, incomplete nuclear condensation, and lower rates of enucleation than control cells. Setd8 knockdown did not alter ESRE proliferation or viability, or result in accumulation of DNA damage. Global gene expression analyses following Setd8 knockdown suggests that in erythroid cells, Setd8 functions primarily as a repressor and demonstrated high levels of Gata2 expression. Setd8 occupies critical regulatory elements in the Gata2 locus, and knockdown of Setd8 resulted in loss of H4K20me1 and gain of H4 acetylation at the Gata2 1S promoter. Taken together, these results imply that Setd8 is an important regulator of erythroid maturation that works in part through repression of Gata2. Overall design: RNA-seq was performed of Setd8 knockdown and control cells, both while the cells were proliferating, and after 6 hours of maturation.

Publication Title

Histone methyltransferase Setd8 represses Gata2 expression and regulates erythroid maturation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE87671
Identifying Nuclear Matrix-attached DNA across the Genome
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Identifying Nuclear Matrix-Attached DNA Across the Genome.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE74004
Expression data from H9 human embryonic stem cells (hESCs) differentiated to Early Mesoendoderm
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

We used microarrays to detail the global programme of gene expression during early hESC differentiation to Mesendoderm using FBS.

Publication Title

Lineage-Specific Early Differentiation of Human Embryonic Stem Cells Requires a G2 Cell Cycle Pause.

Sample Metadata Fields

Sex, Cell line, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact