Summary: Brain trauma is a major cause of morbidity and mortality, both in adult and pediatric populations. Much of the functional deficit derives from delayed cell death resulting from induction of neurotoxic factors that overwhelm endogenous neuroprotective responses.
Gene expression profile changes are commonly modulated across models and species after traumatic brain injury.
No sample metadata fields
View SamplesAlternative splicing (AS) plays a critical role in cell fate transitions, development and disease. Recent studies have shown that AS also influences pluripotency and somatic cell reprogramming. We profiled transcriptome-wide AS changes that occur during reprogramming of fibroblasts to pluripotency. This analysis revealed distinct phases of AS during reprogramming, including a splicing program that is unique to transgene-independent iPS cells. Changes in the expression of alternative splicing factors Zcchc24, Esrp1, Mbnl1/2 and Rbm47 were demonstrated to be key contributors to phase-specific AS. RNA binding motif enrichment analysis near alternatively spliced exons provided further insight into the combinatorial regulation of AS during reprogramming by different RNA binding proteins. Ectopic expression of Esrp1 enhanced reprogramming, in part by modulating the AS of the epithelial specific transcription factor Grhl1.These data represent a comprehensive temporal analysis of the dynamic regulation of AS during the acquisition of pluripotency. Overall design: Mouse embryo fibroblasts were isolated from an E12.5 embryo that was homozygous for a TET-OP-OKSM polycistronic transgene targeted to the collagen 1A locus and homozygous for rtTA targeted to the Rosa26 locus. Therefore the expression of the “4 factors/Yamanaka factors” that induce pluripotency can be induced with doxycycline treatment. Using this model we isolated RNA in triplicate over a timecourse of 0, 4, 7, 10, 15, 20, days of dox treatment as well as 3 transgene independent clones. Ssea1 MACS purification (Miltenyi Biotec) was used at each time point except zero.
SEASTAR: systematic evaluation of alternative transcription start sites in RNA.
No sample metadata fields
View SamplesARC (NSC 188491, SMA-491), 4-amino-6-hydrazino-7-beta-d-ribofuranosyl-7H-pyrrolo-(2,3-d)-pyrimidine-5-carboxamide, is a nucleoside analog with profound in vitro anti-cancer activity. First identified in a high-throughput screen for inhibitors of p21 mRNA expression, subsequent experiments showed that ARC also repressed expression of hdm2 and survivin, leading to its classification as a global inhibitor of transcription 1. The following Hu U133 plus 2.0 arrays represent single time point (24 hour) gene expression analysis of transcripts altered by ARC treatment. Arrays for the other compounds (sangivamycin and doxorubicin) are included as comparators.
ARC (NSC 188491) has identical activity to Sangivamycin (NSC 65346) including inhibition of both P-TEFb and PKC.
No sample metadata fields
View SamplesAlternative splicing (AS) plays a critical role in cell fate transitions, development and disease. Recent studies have shown that AS also influences pluripotency and somatic cell reprogramming. We profiled transcriptome-wide AS changes that occur during reprogramming of fibroblasts to pluripotency. This analysis revealed distinct phases of AS during reprogramming, including a splicing program that is unique to transgene-independent iPS cells. Changes in the expression of alternative splicing factors Zcchc24, Esrp1, Mbnl1/2 and Rbm47 were demonstrated to be key contributors to phase-specific AS. RNA binding motif enrichment analysis near alternatively spliced exons provided further insight into the combinatorial regulation of AS during reprogramming by different RNA binding proteins. Ectopic expression of Esrp1 enhanced reprogramming, in part by modulating the AS of the epithelial specific transcription factor Grhl1.These data represent a comprehensive temporal analysis of the dynamic regulation of AS during the acquisition of pluripotency. Overall design: ES cells from 3 independent E3.5 blastocysts from either Control (Esrp1 WT/WT; Esrp2 -/-) or Esrp DKO (Esrp1 floxed/floxed; Esrp2 -/-) were transfected with pLVX-EGFP-Cre, puro selected and RNA was isolated 6 days later.
SEASTAR: systematic evaluation of alternative transcription start sites in RNA.
Specimen part, Subject
View SamplesChronic non-healing venous leg ulcers (VLUs) are a widespread debilitating disease with high morbidity and associated costs, as approximately $15 billion annually are spent on the care of VLUs. Despite their socioeconomic burden, there is a paucity of novel treatments targeted towards healing VLUs, which can be attributed to both lack of pathophysiologic insight into VLU development as well as lack of knowledge regarding biologic actions of VLU-targeted therapies. Currently, the bioengineered bilayered living cellular construct (BLCC) skin substitute is the only FDA-approved biologic treatment for healing VLUs. To elucidate the mechanisms through which the BLCC promotes healing of chronic VLUs, we conducted a clinical trial (NCT01327937) in which patients with non-healing VLUs were treated with either standard care (compression therapy) or with BLCC together with standard care. Tissue was collected from the VLU edge before and 1 week after treatment, and samples underwent comprehensive microarray, mRNA and protein analyses. Ulcers treated with BLCC skin substitute displayed three distinct patterns suggesting the mechanisms by which BLCC shifted a non-healing into a healing tissue response: it modulated inflammatory and growth factor signaling; it activated keratinocytes; and it attenuated Wnt/-catenin signaling. In these ways, BLCC application orchestrated a shift of the chronic non-healing ulcer microenvironment into a distinctive healing milieu resembling that of an acute, healing wound. Our findings also provide first patient-derived in vivo evidence of specific biologic processes that can be targeted in the design of therapies to promote healing of chronic VLUs.
A bioengineered living cell construct activates an acute wound healing response in venous leg ulcers.
Specimen part, Disease stage, Time
View SamplesDiabetic foot ulcers (DFUs) are the leading cause of lower leg amputations in diabetic population. To better understand molecular pathophysiology of DFUs we used patients specimens and genomic profiling. We identified 3900 genes specifically regulated in DFUs. Moreover, we compared DFU to human skin acute wound (AW) profiles and found DNA repair mechanisms and regulation of gene expression among the processes specifically suppressed in DFUs, whereas essential wound healing-related processes, inflammatory/immune response or cell migration, were not activated properly. To identify potential regulators of DFU-specific genes, we used upstream target analysis. We found miR-15/16 family enriched in DFUs, but not in AW, which was confirmed by qPCR. We found that infection with the most common DFU colonizer, Staphylococcus aureus, triggers induction of miR-15-5p, which in turn, targets multiple DFU-specific genes, including genes involved in DNA repair (WEE1, MSH2 and RAD50) and the regulator of inflammatory pathway, IKBKB. Induction of miR-15b-5p, either by miR-mimic transfection in vitro or by S. aureus infection of acute wounds ex vivo, suppressed both WEE1 and IKBKB. Consequently, we detected an increase in DNA double strand breaks in DFUs. In summary, our data indicate that S. aureus infection, via induction of miR-15b-5p, may lead to suppression of DNA repair mechanisms and a sub-optimal inflammatory response, contributing to pathophysiology of DFU patients
Staphylococcus aureus Triggers Induction of miR-15B-5P to Diminish DNA Repair and Deregulate Inflammatory Response in Diabetic Foot Ulcers.
Specimen part, Disease, Disease stage
View SamplesPrimary human hepatocytes (PHHs) are a liver-specific cell subtype, and we have shown that these cells respond in a unique manner to the introduction of hepatitis C viral RNA (HCV vRNA) derived from different genotypes of the virus.
Transmitted/founder hepatitis C viruses induce cell-type- and genotype-specific differences in innate signaling within the liver.
Specimen part
View SamplesCord blood stem cells were expanded and differentiated to NK cells. Samples taken at different days after induction of differentiation were analyzed and compared to undifferentiated expanded stem cells. The most highly upregulated genes were further analyzed.
The Transcription Factor ZNF683/HOBIT Regulates Human NK-Cell Development.
Specimen part, Time
View SamplesXenograft models remain a cornerstone technology in the development of anti-cancer agents. The ability of immunocompromised rodents to support the growth of human tumors provides an invaluable transition between in vitro testing and clinical trials. Therefore, approaches to improve model selection are required. In this study, cDNA microarray data was generated for a collection of xenograft models at in vivo passages 1, 4 and 10 (P1, P4 and P10) along with originating cell lines (P0). These data can be mined to determine transcript expression 1) relative to other models 2) with successive in vivo passage and 3) during the in vitro (P0) to in vivo (P1) transition.
Gene expression profiling of 49 human tumor xenografts from in vitro culture through multiple in vivo passages--strategies for data mining in support of therapeutic studies.
No sample metadata fields
View SamplesTranscriptomic studies of human tumor xenografts are complicated by the presence of murine cellular mRNA. As such, it is useful to know the extent to which mouse mRNA cross-hybridizes to any given array platform. In this study, murine cDNA samples from diverse sources were hybridized to Affymetrix Human Genome U133 Plus 2.0 Arrays. In this regard it is possible to identify specific probes that are potential targets of cross-species interference.
Gene expression profiling of 49 human tumor xenografts from in vitro culture through multiple in vivo passages--strategies for data mining in support of therapeutic studies.
Specimen part, Cell line
View Samples