This study was designed to provide a genome-wide analysis of the effects of luteinizing hormone (LH) ablation/replacement versus steroid ablation/replacement on gene expression in the developed corpus luteum (CL) in primates during the menstrual cycle. Naturally cycling, female rhesus monkeys were left untreated (Control; n = 4) or received one of the following treatments for three days beginning on Day 9 of the luteal phase: daily injection of the gonadotropin-releasing hormone (GnRH) antagonist (Antide; n = 5), Antide + recombinant human LH (A+LH; n = 4), Antide + LH + the 3b-HSD antagonist Trilostane (A+LH+TRL; n = 4), and Antide + LH + TRL + progesterone replacement with a synthetic progestin R5020 (A+LH+TRL+ R5020; n = 5). On Day 12 of the luteal phase, CL were removed and samples of RNA from individual CL were fluorescently labeled and hybridized to Affymetrix rhesus macaque total genome microarrays. The greatest number of altered transcripts was associated with the ablation/replacement of LH, while ablation/replacement of progestin affected fewer transcripts. Replacement of LH during Antide treatment restored expression of most transcripts to control levels. Real-time PCR validation of a subset of transcripts revealed that most expression patterns were similar between microarray and real-time PCR. Analysis of protein levels were subsequently determined for 2 of the transcripts differentially expressed by real-time PCR. This is the first genome-wide analysis of LH and steroid regulation of gene transcription in the developed primate CL. Further analysis of novel transcripts identified in this data set can clarify the relative role for LH and steroids in CL maintenance and luteolysis.
The effects of luteinizing hormone ablation/replacement versus steroid ablation/replacement on gene expression in the primate corpus luteum.
No sample metadata fields
View SamplesThe molecular and cellular processes required for development, function, and regression of the primate corpus luteum (CL) are poorly defined. We hypothesized that there are dynamic changes in gene expression occurring during the CL lifespan, which represent proteins and pathways critical to its regulation. Therefore, a genomic approach was utilized to systematically identify differentially expressed genes in the rhesus macaque CL during the luteal phase of natural menstrual cycles. CL were collected between days 3-5 (early stage), 7-8 (mid), 10-12 (mid-late), 14-16 (late), or 18-19 (very-late) after the midcycle LH surge. From the early through very-late stages, 3234 transcripts were differentially expressed, with 879 occurring from the early through late stages that encompass the processes of luteinization, maintenance, and functional regression. To characterize gene changes most relevant to these processes, ontology analysis was performed using the list of 879 differentially expressed transcripts. Four main groups of related genes were identified with relevance to luteal physiology including: 1) immune function; 2) hormone and growth factor signaling; 3) steroidogenesis; and 4) prostaglandin biosynthesis, metabolism, and signaling. A subset of genes representing each of the four major categories was selected for validation of microarray results by quantitative real-time PCR. Results in mRNA levels were similar between the two methodologies for 17 of 18 genes. Additionally, protein levels for 3 genes were determined by Western blot analysis to parallel mRNA levels. This database will facilitate the identification of many novel or previously underappreciated pathways that regulate the structure and function of the primate CL.
Systematic determination of differential gene expression in the primate corpus luteum during the luteal phase of the menstrual cycle.
Sex
View SamplesTo explore chorionic gonadotropin (CG)-regulated gene expression in the primate corpus luteum (CL), adult female rhesus macaques were treated with a model of simulated early pregnancy (SEP). Total RNA was isolated from individual CL and hybridized to Affymetrix GeneChip Rhesus Macaque Genome Arrays The level of 1192 transcripts changed expression > 2-fold (one-way ANOVA, FDR correction; P<0.05) during SEP when compared to Day 10 untreated controls, and the majority of changes occurred between Days 10 and 12 of SEP. To compare transcript levels between SEP rescued and regressing CL, previously banked rhesus GeneChip array data from the mid- to late and very late luteal phase were analyzed with time-matched intervals in SEP. Comparing RMA-normalized transcripts from the natural cycle with those from luteal rescue revealed 7677 transcripts changing in expression pattern >2 fold (one-way ANOVA, FDR correction; P<0.05) between the two groups. Clustering of samples revealed that the SEP samples possessed the most related transcript expression profiles. Regressed CL (days 18-19, around menses) were the most unlike all other CL. The most affected KEGG pathway was Steroid Biosynthesis, and most significantly absent pathways following SEP treatment includes groups of genes whose products promote cell-death. By further comparing the genome-wide changes in luteal gene expression during rescue in SEP, with those in CL during luteolysis in the natural menstrual cycle, it is possible to identify key regulatory pathways promoting fertility.
Microarray analysis of the primate luteal transcriptome during chorionic gonadotrophin administration simulating early pregnancy.
Sex, Specimen part
View SamplesThe LH-like molecule chorionic gonadotropin (CG) is secreted by the macaque conceptus during and following implantation, rescuing the CL from impending regression and extending its functional lifespan in early pregnancy for approximately two weeks. CG binds to the same receptor as LH; i.e., LHCGR, and promotes production of steroids and other factors such as relaxin (RLN1). Our research group recently used Affymetrix rhesus macaque total genome arrays to compare the effects of CG on the luteal transcriptome from rhesus females during simulated early pregnancy (SEP) with changes during luteal regression in the non-fecund menstrual cycle. This analysis demonstrated that CG-rescue affected expression levels of 4,500 mRNA transcripts between days 10 and 15 of the luteal phase. Previous analyses indicated that a portion of the transcriptome in the macaque CL of the menstrual cycle was regulated indirectly by LH via the local actions of steroid hormones, including progesterone (P). Therefore, this study was designed to distinguish CG-regulated luteal genes that are dependent versus independent of local steroid (P) action. A protocol of increasing dosages of hCG (SEP) was begun on day 9 of the luteal phase in rhesus females combined with concurrent administration of the 3BHSD inhibitor trilostane (TRL) +/- the synthetic progestin (P) R5020. CL were collected on day 10 (no treatment) of the luteal phase to serve as a baseline comparison (n=8), 1 day of SEP (Day 10+hCG+/-TRL+/-R5020) and 6 days of SEP (Day 15+hCG+/-TRL+/-R5020); n=4/group. In the presence of CG, treatment with TRL reduced serum P levels to less than 1 ng/ ml after 1 day and all of the Day 15+h+TRL-treated females initiated menses before CL collection. The isolated CL were processed for total RNA and hybridized to microarrays. Compared to hCG treatment alone, 50 significantly altered mRNA transcripts were identified on day 10, rising to 95 on day 15 (P<0.05, 2-fold change in gene expression). The mRNA levels for several genes were validated in CL by real-time PCR. RNL1 levels increased with CG-treatment, but were not affected by steroid ablation, similar to previously reported relaxin protein expression. Steroid-sensitive genes included CDH11, IL1RN, INSL3, LDLR, OPA1, SERPINE1, SFRP4, and TNSF13B1; however differential sensitivity was observed and effects of steroid ablation and P replacement varied by day. Expression of some genes (e.g., 3BHSD2, ADAMTS1, ADAMTS5, MMP9, STAR, and VEGFA) previously identified as steroid regulated in the macaque CL during the menstrual cycle were not significantly altered by steroid ablation and P replacement during CG exposure in SEP. These data indicate that the majority of CG-regulated luteal transcripts are differentially expressed independently of local steroid actions. The proportion of steroid sensitive mRNA transcripts in the presence of CG is much smaller than in the presence of LH during the non-fecund cycle. Nevertheless, the steroid-regulated genes in the macaque CL may be essential during early pregnancy, based on the previous report that TRL treatment initiates premature structural regression of the CL during SEP. These data reinforce the concept that the structure, function, and regulation of the rescued CL in early pregnancy is different from the CL of the menstrual cycle.
Effects of steroid ablation and progestin replacement on the transcriptome of the primate corpus luteum during simulated early pregnancy.
Sex, Specimen part
View SamplesThis study examined the small antral follicles (SAFs) in ovaries of young adult rhesus monkeys following consumption of a western-style diet (WSD), with or without chronically elevated androgen levels since before puberty. Cholesterol or testosterone (T; n=6/group) implants were placed subcutaneously beginning at 1 yr of age, with addition of a WSD (high fat/fructose) at 5.5 yrs. Ovaries from treated females and age-matched controls were collected at 7 yrs of age. Compared to controls, consumption of a WSD, with and without T treatment, increased the numbers of SAFs per ovary (P<0.001), due to the presence of more atretic follicles (P<0.01). Immunostaining for the cellular proliferation markers (pRb and pH3) was greater in granulosa cells of healthy SAFs (P<0.01), while staining for the cell cycle inhibitor (p21) was higher in atretic SAFs (P<0.01). Intense CYP17A1 staining was observed on the theca of SAFs from WSD+/- T groups, compared to controls. Microarray analyses of the transcriptome in SAFs isolated from a subgroup (n=3/grp) of WSD and WSD+T treated females and controls consuming a standard diet, identified mRNA levels for 1944 genes changed >2-fold (p<0.05) among the three groups. Pathway analyses identified several gene pathways altered by WSD and/or WSD+T associated with lipid, carbohydrate and lipid metabolism, plus ovarian processes. Alterations of several SAF mRNAs are similar to those observed in follicular cells from women with PCOS. These data indicate chronic exposure to a WSD in the presence and absence of chronically elevated T alters structure and function of SAFs within primate ovaries.
Western-style diet, with and without chronic androgen treatment, alters the number, structure, and function of small antral follicles in ovaries of young adult monkeys.
Sex, Specimen part
View SamplesExperiments were designed to evaluate changes in the transcriptome (mRNA levels) in the ovulatory, luteinizing follicle of rhesus monkeys, using a controlled ovulation (COv) model that permits analysis of the naturally selected, dominant follicle at specific intervals (0, 12, 24, 36 hours) after exposure to an ovulatory (exogenous hCG) stimulus during the menstrual cycle. Total RNA was prepared from individual follicles (n=4-8/timepoint), with an aliquot used for microarray analysis (AffymetrixTM Rhesus Macaque Genome Array) and the remainder applied to quantitative real-time PCR (q-PCR) assays. The microarray data from individual samples distinctly clustered according to timepoints, and ovulated follicles displayed markedly different expression patterns from unruptured follicles at 36 h. Between timepoint comparisons revealed profound changes in mRNA expression profiles. The dynamic pattern of mRNA expression for steroidogenic enzymes (CYP17A, CYP19A, HSD3B2, HSD11B1, HSD11B2), StAR, and gonadotropin receptors (LHCGR, FSHR) as determined by microarray analysis correlated precisely with those from blinded q-PCR assays. Patterns of mRNA expression for EGF-like factors (AREG, EREG) and processes (HAS2, TNFAIP6) implicated in cumulus-oocyte maturation/expansion were also comparable between assays. Thus, several mRNAs displayed the expected expression pattern for purported theca (e.g., CYP17A, AREG), granulosa (CYP19A, FSHR), cumulus (HAS2, TNFAIP6) cell, and surface epithelium (HSD11B) related genes in the rodent/primate preovulatory follicle. This database will be of great value in analyzing molecular and cellular pathways associated with periovulatory events in the primate follicle (e.g. follicle rupture, luteinization, inflammatory response, and angiogenesis), and for identifying novel gene products controlling mammalian fertility.
Dynamics of the transcriptome in the primate ovulatory follicle.
Sex, Specimen part
View SamplesARC (NSC 188491, SMA-491), 4-amino-6-hydrazino-7-beta-d-ribofuranosyl-7H-pyrrolo-(2,3-d)-pyrimidine-5-carboxamide, is a nucleoside analog with profound in vitro anti-cancer activity. First identified in a high-throughput screen for inhibitors of p21 mRNA expression, subsequent experiments showed that ARC also repressed expression of hdm2 and survivin, leading to its classification as a global inhibitor of transcription 1. The following Hu U133 plus 2.0 arrays represent single time point (24 hour) gene expression analysis of transcripts altered by ARC treatment. Arrays for the other compounds (sangivamycin and doxorubicin) are included as comparators.
ARC (NSC 188491) has identical activity to Sangivamycin (NSC 65346) including inhibition of both P-TEFb and PKC.
No sample metadata fields
View SamplesHost pathways mediating changes in immune states elicited by intestinal microbial colonization are incompletely characterized. Here we describe alterations of the host immune state induced by colonization of germ-free zebrafish larvae with an intestinal microbial community or single bacterial species. We show that microbiota-induced changes in intestinal leukocyte subsets and whole-body host gene expression are dependent on the innate immune adaptor gene myd88. Similar patterns of gene expression are elicited by colonization with conventional microbiome, as well as mono-colonization with two different zebrafish commensal bacterial strains. By studying loss-of-function myd88 mutants, we find that colonization suppresses Myd88 at the mRNA level. Tlr2 is essential for microbiota-induced effects on myd88 transcription and intestinal immune cell composition. Overall design: Zebrafish embryos were sterilized to generate germ-free groups. Transcriptomic responses in germ-free embryos were were assessed relative to colonized embryos, either colonized by complex and in characterized microbial communities (Conventionalozation) or by specefic single commensal bacterial species (monoassociation, Exiguobacterium/Chryseobacterium)
Intestinal microbiome adjusts the innate immune setpoint during colonization through negative regulation of MyD88.
Treatment, Subject
View SamplesChronic non-healing venous leg ulcers (VLUs) are a widespread debilitating disease with high morbidity and associated costs, as approximately $15 billion annually are spent on the care of VLUs. Despite their socioeconomic burden, there is a paucity of novel treatments targeted towards healing VLUs, which can be attributed to both lack of pathophysiologic insight into VLU development as well as lack of knowledge regarding biologic actions of VLU-targeted therapies. Currently, the bioengineered bilayered living cellular construct (BLCC) skin substitute is the only FDA-approved biologic treatment for healing VLUs. To elucidate the mechanisms through which the BLCC promotes healing of chronic VLUs, we conducted a clinical trial (NCT01327937) in which patients with non-healing VLUs were treated with either standard care (compression therapy) or with BLCC together with standard care. Tissue was collected from the VLU edge before and 1 week after treatment, and samples underwent comprehensive microarray, mRNA and protein analyses. Ulcers treated with BLCC skin substitute displayed three distinct patterns suggesting the mechanisms by which BLCC shifted a non-healing into a healing tissue response: it modulated inflammatory and growth factor signaling; it activated keratinocytes; and it attenuated Wnt/-catenin signaling. In these ways, BLCC application orchestrated a shift of the chronic non-healing ulcer microenvironment into a distinctive healing milieu resembling that of an acute, healing wound. Our findings also provide first patient-derived in vivo evidence of specific biologic processes that can be targeted in the design of therapies to promote healing of chronic VLUs.
A bioengineered living cell construct activates an acute wound healing response in venous leg ulcers.
Specimen part, Disease stage, Time
View SamplesDiabetic foot ulcers (DFUs) are the leading cause of lower leg amputations in diabetic population. To better understand molecular pathophysiology of DFUs we used patients specimens and genomic profiling. We identified 3900 genes specifically regulated in DFUs. Moreover, we compared DFU to human skin acute wound (AW) profiles and found DNA repair mechanisms and regulation of gene expression among the processes specifically suppressed in DFUs, whereas essential wound healing-related processes, inflammatory/immune response or cell migration, were not activated properly. To identify potential regulators of DFU-specific genes, we used upstream target analysis. We found miR-15/16 family enriched in DFUs, but not in AW, which was confirmed by qPCR. We found that infection with the most common DFU colonizer, Staphylococcus aureus, triggers induction of miR-15-5p, which in turn, targets multiple DFU-specific genes, including genes involved in DNA repair (WEE1, MSH2 and RAD50) and the regulator of inflammatory pathway, IKBKB. Induction of miR-15b-5p, either by miR-mimic transfection in vitro or by S. aureus infection of acute wounds ex vivo, suppressed both WEE1 and IKBKB. Consequently, we detected an increase in DNA double strand breaks in DFUs. In summary, our data indicate that S. aureus infection, via induction of miR-15b-5p, may lead to suppression of DNA repair mechanisms and a sub-optimal inflammatory response, contributing to pathophysiology of DFU patients
Staphylococcus aureus Triggers Induction of miR-15B-5P to Diminish DNA Repair and Deregulate Inflammatory Response in Diabetic Foot Ulcers.
Specimen part, Disease, Disease stage
View Samples