The transcription factor MEF2C is specifically induced by VEGF in endothelial cells. To delineate target genes of MEF2C in endothelial cells, which might be important during angiogenesis also, MEF2C was overexpressed adenovirally in human umbilical vein endothelial cells (HUVECs) over a period of 8 to 32 hours.
The transcription factor MEF2C negatively controls angiogenic sprouting of endothelial cells depending on oxygen.
Specimen part, Treatment
View SamplesAngiogenesis is defined as the formation of new capillaries by sprouting from preexisting vessels. It is mainly triggered by vascular endothelial growth factor (VEGF) and occurs in the adult primarily in wound healing processes or in pathologic tumor vessel growth. To identify genes specifically triggered by VEGF and involved in the process of angiogenesis, we utilized Affymetrix microarrays hybridized with cRNA of human umbilical vein endothelial cells (HUVEC) stimulated with either the main trigger of angiogenesis, VEGF or a more general mitogenic growth factor, EGF.
The VEGF-induced transcriptional response comprises gene clusters at the crossroad of angiogenesis and inflammation.
No sample metadata fields
View SamplesAngiogenesis, the formation of new capillaries by sprouting from preexisting vessels, is mainly induced by VEGF-A. To identify genes which are induced by VEGF-A in endothelial cells, HUVEC were starved and induced by VEGF-A165 for 30, 60 and 150min. RNA of induced and uninduced cells was isolated and subjected to microarray analysis using Affymetrix microarray.
The VEGF-induced transcriptional response comprises gene clusters at the crossroad of angiogenesis and inflammation.
Specimen part, Treatment, Time
View SamplesHLX was found as a VEGF-A induced gene in HUVEC (B.Schweighofer, submitted). In order to detect genes regulated by HLX HUVEC were infected by recombinant adenovirus expressing HLX for 4, 8, 16 and 32h. RNA was isolated and subjected to microarray analysis using Affymetrix microarray.
The VEGF-regulated transcription factor HLX controls the expression of guidance cues and negatively regulates sprouting of endothelial cells.
No sample metadata fields
View SamplesIntensive lifestyle modification is believed to mediate cardiovascular disease (CVD) risk through traditional pathways that affect endothelial function and progression of atherosclerosis; however, the extent, persistence, and clinical significance of molecular change during lifestyle modification are not well known. Our study reveals that gene expression signatures are significantly modulated by rigorous lifestyle behaviors and track with CVD risk profiles over time.
Intensive cardiovascular risk reduction induces sustainable changes in expression of genes and pathways important to vascular function.
Sex, Age
View SamplesType 1 diabetes is characterized by the destruction of pancreatic beta cells, and generating new insulin-producing cells from other cell types is a major aim of regenerative medicine. One promising approach is transdifferentiation of developmentally related pancreatic cell types including glucagon-producing alpha cells. In a genetic model, overexpression of the master regulatory transcription factor Pax4 or loss of its counterplayer Arx are sufficient to induce the conversion of alpha cells to functional beta-like cells. Here we identify artemisinins as small molecules that functionally repress Arx and induce beta-cell characteristics in alpha cells. We show that the protein gephyrin is the mammalian target of these antimalaria drugs. Finally, we demonstrate that gephyrin-mediated enhancement of GABAA receptor signaling is the mechanism of action of these molecules in pancreatic transdifferentiation. Our results indicate that gephyrin is a novel druggable target for the regeneration of pancreatic beta cell mass from alpha cells. Overall design: Transcriptional dissection of Artemether treated, human pancreatic islets of one donor using single-cell RNA-seq
Artemisinins Target GABA<sub>A</sub> Receptor Signaling and Impair α Cell Identity.
Subject
View SamplesType 1 diabetes is characterized by the destruction of pancrea tic beta cells, and generating new insulin-producing cells from other cell types is a major aim of regenerative medicine. One promising approach is transdifferentiation of developmentally related pancreatic cell types including glucagon-producing alpha cells. In a genetic model, loss of the master regulatory transcription factor Arx is sufficient to induce the conversion of alpha cells to functional beta-like cells. Here we identify artemisinins as small molecules that functionally repress Arx by causing its translocation to the cytoplasm. We show that the protein gephyrin is the mammalian target of these antimalaria drugs, and that enhancement of GABAA receptor signaling contributes to the mechanism of action of these molecules in pancreatic transdifferentiation. Our results in zebrafish, rodents and primary human pancreatic islets indicate that gephyrin is a novel druggable target for the regeneration of pancreatic beta cell mass from alpha cells. Overall design: There are two parts in the transcriptional study on mouse cell lines in this project. One part is on Min6-ARX inducible cells with different induction time of Dox. This is done in three different clones. The other part is on alpha-TC1 cells. This is done in one concentration of Artemether, one time point and two biological repeats.
Artemisinins Target GABA<sub>A</sub> Receptor Signaling and Impair α Cell Identity.
Specimen part, Cell line, Subject
View SamplesChlamydia trachomatis serovariants are responsible for either Trachoma, the leading cause of infectious blindness or sexually transmitted disease, wherein the endocervix is the most frequently infected site in women. Disease caused by Chlamydia typically involves chronic inflammation and scarring. Recent work with a live-attenuated A2497 plasmid deficient vaccine strain (A2497-) demonstrated protection in nonhuman primates against trachoma and a lack of measurable ocular pathology in A2497- infected monkeys. We therefore performed host cell transcriptome analysis of Hela cells infected with A2497 plasmid-containing (A2497) and A2497- Chlamydia over time. Our results indicate that relative to wild type A2497, the A2497- variant illicits a transcriptome response indicative of lowered inflammation response a delayed apoptosis response, a reduction in immune cell recruitement cytokine expression and a reduction in genes involved in cell proliferation and or fibrosis-like activities. The data provided here suggests a model that may explain how plasmid deficient chlamydia may provide an immuno-protective response without the pathology normally seen with plasmid-containing bacteria.
Transcriptional profiling of human epithelial cells infected with plasmid-bearing and plasmid-deficient Chlamydia trachomatis.
Disease, Cell line
View SamplesSickle cell disease (SCD) results from a point mutation in the ß-globin gene forming hemoglobin S (HbS), which polymerizes in deoxygenated erythrocytes, triggering recurrent painful vaso-occlusive crises and chronic hemolytic anemia. Reactivation of fetal Hb (HbF) expression ameliorates these symptoms of SCD. Nuclear factor (erythroid derived-2)–like 2 (Nrf2) is a transcription factor that triggers cytoprotective and antioxidant pathways to limit oxidative damage and inflammation and increases HbF synthesis in CD34+ stem cell–derived erythroid progenitors. We investigated the ability of dimethyl fumarate (DMF), a small-molecule Nrf2 agonist, to activate ?-globin transcription and enhance HbF in tissue culture, murine and primate models. DMF recruited Nrf2 to the ?-globin promoters and the locus control region of the ß-globin locus in erythroleukemia cells, elevated HbF in SCD donor–derived erythroid progenitors, and reduced hypoxia-induced sickling. Chronic DMF administration in SCD mice induced HbF and increased Nrf2-dependent genes to detoxify heme and limit inflammation. This improved hematological parameters, reduced plasma-free Hb, and attenuated inflammatory markers. Chronic DMF administration to nonanemic primates increased ?-globin mRNA in BM and HbF protein in red cells. DMF represents a potential therapy for SCD to induce HbF and augment vasoprotection and heme detoxification Overall design: RNA-Seq of 30 samples
Dimethyl fumarate increases fetal hemoglobin, provides heme detoxification, and corrects anemia in sickle cell disease.
Age, Specimen part, Treatment, Subject
View SamplesThe excessive perchlorate utilization as an oxidizer in rocket propellants and blasting agents had led to the contamination of surface and ground waters. This chemical is known to compete with iodine for binding to the thyroid membrane receptors potentially causing hypothyroidism and fetal retardation in pregnant women. Nevertheless, to date, its biological effects are not completely understood. We have investigated the molecular mechanisms responsive to perchlorate in the nematode C. elegans to nominate a candidate gene for further peruse in the development of a C.elegans perchlorate biosensor. Perchlorate (1 mg/mL) affected the transcriptional response of Regulation of developmental process, growth, defense mechanisms and stress response, among other biological processes.
Perchlorate detection <i>via</i> an invertebrate biosensor.
Treatment
View Samples