refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 44 results
Sort by

Filters

Technology

Platform

accession-icon GSE13250
Splenic CD8+ and CD8- DCs
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Analysis of gene expressions in mouse splenic dendritic cells (DCs). DCs were purified into two subsets, CD8-positive and -negative ones. DCs were expanded in vivo by injecting Flt3L-producing tumors into the backs of C57BL/6 mice.

Publication Title

A new triggering receptor expressed on myeloid cells (Trem) family member, Trem-like 4, binds to dead cells and is a DNAX activation protein 12-linked marker for subsets of mouse macrophages and dendritic cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP039001
Gene expression profiling in allele replacement panel strains containing all combinations of four sporulation QTN in S. cerevisiae
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 145 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We study the effect of four QTN in RME1, IME1 & RSF1 that are causative for variation in sporulation efficiency. We investigate the relationship between genotype, gene expression and phenotype and whether the amount of gene expression variation explained by the sporulation QTN is predictive of the amount of phenotypic variation explained by them. Overall design: RNA-Seq analysis of 4 replicates each of 16 allele replacement panel strains containing all combinations of the four sporulation QTN after 2 hours in sporulation medium.

Publication Title

Single nucleotide variants in transcription factors associate more tightly with phenotype than with gene expression.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE36165
Drug efficacy reprogramming against aggressive human prostate cancer
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We enriched for prostate cancer cells by the selection system used in human iPS purification. Gene expression signature-based chemical prediction enabled us to identify candidate drugs for reverting the EOS (early transposon promoter, OCT4 and SOX2 enhancer) signature with chemoresistance into a chemosensitive phenotype.

Publication Title

Identification of drug candidate against prostate cancer from the aspect of somatic cell reprogramming.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE12955
Gene expression profile of zebrafish kidney side population (SP) cells
  • organism-icon Danio rerio
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Zebrafish Genome Array (zebrafish)

Description

Side population (SP) cells are identified based on their capacity to efflux of the fluorescent dye Hoechst 33342, and are enriched for hematopoietic stem cells (HSCs) in mammalian bone marrow. We recently demonstrated that SP cells were present in the teleost kidney, the main hematopoietic organ in teleosts, and were enriched for HSCs. In this analysis, to identify the regulated genes in teleost HSCs, gene expression analysis of zebrafish kidney SP cells were performed using the GeneChip Zebrafish Genome Array.

Publication Title

Comparative gene expression analysis of zebrafish and mammals identifies common regulators in hematopoietic stem cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP152306
PRMT5 Modulates Splicing in Hematopoietic Stem Cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

This study aimed to clarify the role of PRMT5 in the hematopoietic stem cell (HSC) compartment, and elucidate the functional relevance of PRMT5-mediated splicing in HSCs. We confirm the cell intrinsic requirement for PRMT5 in HSC maintenance, and present evidence suggesting that PRMT5 deficiency perturbs HSC proteostasis. Notably, we also uncover a critical role for PRMT5 in maintaining HSC genomic integrity by modulating splicing of genes involved in DNA repair; loss of which leads to unresolved DNA damage, p53 activation and rapid HSC exhaustion. Overall, these findings establish PRMT5-mediated splicing as a major determinant of HSC fate, and highlight the need to maintain an adequate level of PRMT5 activity in HSCs. Overall design: Hematopoietic stem cells (HSCs; Lineage-Sca-1+CD48-CD150+), isolated from Prmt5fl/fl or Prmt5?/? littermate- and gender-matched mice 7 days post-induction, were subjected to RNA-seq. HSCs for each independent sample were obtained from bone marrow cells pooled from two mice. Three independent samples were obtained for each group.

Publication Title

PRMT5 Modulates Splicing for Genome Integrity and Preserves Proteostasis of Hematopoietic Stem Cells.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE85016
Expression data from Aged HSCs cultured with or without MTM-Pot1a
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Appropriate regulation of hematopoietic stem cell (HSC) self-renewal is critical for the maintenance of life long hematopoiesis. However, long-term repeated cell divisions induce the accumulation of DNA damage, especially at telomere, significantly compromises HSC function. Therefore, shelterin elements Pot1a is required to prevent DNA damage response at telomeres in order to maintain their function.

Publication Title

The telomere binding protein Pot1 maintains haematopoietic stem cell activity with age.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP075338
mRNA profiles of hematopoieitc stme cells treated with interferon gamma and/or vitronectin
  • organism-icon Mus musculus
  • sample-icon 27 Downloadable Samples
  • Technology Badge IconIon Torrent Proton

Description

Purpose: The goals of this study are to elucidate the influence of integrin ß3 signaling on STAT1-dependnet gene expression in IFN?-treated HSCs. Methods: Wild type (WT) HSCs were cultured with or without IFN? and/or VN in the presence of stem cell factor (SCF) plus thrombopoietin (TPO). Subsequently, cultured HSC fraction (CD48- c-kit+ Sca-1+ Lineage-) were sorted, followed by mRNA sequence using Ion Proton (n>4). Moreover, to extract genes whose expression were changed via STAT1 in the presence of IFN?, mRNA profiles of STAT1-/- HSCs treated with or without IFN? were also generated by the same way. The sequence reads that passed quality filters were analyzed by CLC genomic workbench. Results: Using an optimized data analysis workflow, we mapped about 30 million sequence reads per sample to the mouse genome (build mm10) with CLC genomic workbench. Indeed, hierarchical clustering analysis showed that IFN?-treated STAT1-/- HSCs was categorized to the group including Wt HSCs cultured in the absence of IFN? rather than HSCs treated with IFN?. Furthermore, gene set enrichment analysis (GSEA) showed that STAT1-dependent upregulated gene sets were significantly enriched within genes whose expression was enhanced in HSCs treated with VN and IFN?. In contrast, integrin ß3 signaling in the absence of IFN? appears to not influence the expression of IFN?/STAT1-dependent genes, as evidenced by the observation that VN treatment was statistically and significantly independent of the enrichment of gene sets that were both up-regulated by STAT1 Conclusions: Our study represents that STAT1 plays a central role in IFN?-mediated HSC responses and integrin ß3 signaling in HSCs promotes STAT1-dependent gene expression in the presence of IFN?. Overall design: After HSCs derived from wild type (WT) and STAT1-/- mice were treated with IFNg and/or vitronectin for 5 days, mRNA profiles were generated by deep sequencing using Ion Proton system (n>4).

Publication Title

Integrin αvβ3 enhances the suppressive effect of interferon-γ on hematopoietic stem cells.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE62319
HT29 and GATA6
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

REG4 is a transcriptional target of GATA6 and is essential for colorectal tumorigenesis.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE62316
Gene expression profiles of HT29 cells in which GATA6 expression was suppressed.
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

GATA6 is a zinc finger transcription factor that is required for the proliferation, development and specific gene regulation in the gastrointestinal tract. We have recently reported that GATA6-mediated induction of the intestinal stem cell marker LGR5 is required for the tumorigenicity of colon cancer cells. However, knockdown of LGR5, unlike GATA6, does not affect the proliferation of these cells under adherent conditions. Here we show that REG4, a member of the regenerating islet-derived (REG) family, is a target of GATA6. We further demonstrate that REG4 is downregulated by overexpression of miR-363, which suppresses GATA6 expression. Moreover, we show that GATA6-mediated activation of REG4 causes an acceleration of the growth of colon cancer cells under adherent conditions. These results suggest that GATA6 simultaneously activates the transcription of genes required for growth (REG4) and clonogenicity (LGR5), and the miR-363-GATA6-REG4/LGR5 pathway is critical for colorectal tumorigenesis.

Publication Title

REG4 is a transcriptional target of GATA6 and is essential for colorectal tumorigenesis.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE62317
Gene expression profiles of HT29 cells in which LGR5 expression was suppressed.
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

GATA6 is a zinc finger transcription factor that is required for the proliferation, development and specific gene regulation in the gastrointestinal tract. We have recently reported that GATA6-mediated induction of the intestinal stem cell marker LGR5 is required for the tumorigenicity of colon cancer cells. However, knockdown of LGR5, unlike GATA6, does not affect the proliferation of these cells under adherent conditions. Here we show that REG4, a member of the regenerating islet-derived (REG) family, is a target of GATA6. We further demonstrate that REG4 is downregulated by overexpression of miR-363, which suppresses GATA6 expression. Moreover, we show that GATA6-mediated activation of REG4 causes an acceleration of the growth of colon cancer cells under adherent conditions. These results suggest that GATA6 simultaneously activates the transcription of genes required for growth (REG4) and clonogenicity (LGR5), and the miR-363-GATA6-REG4/LGR5 pathway is critical for colorectal tumorigenesis.

Publication Title

REG4 is a transcriptional target of GATA6 and is essential for colorectal tumorigenesis.

Sample Metadata Fields

Cell line, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact