refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 39 results
Sort by

Filters

Technology

Platform

accession-icon GSE3368
Genomic Analysis of the Xenopus Organizer
  • organism-icon Xenopus laevis
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Xenopus laevis Genome Array (xenopuslaevis)

Description

Studies of the Xenopus organizer have laid the foundation for our understanding of the conserved signaling pathways that pattern vertebrate embryos during gastrulation. Here, we use this wealth of knowledge as leverage in the design and analysis of a genomic visualization of organizer-related gene transcription. Using ectopic expression of the two major activities of the organizer, BMP and Wnt inhibition, as well as endogenous tissues, we generate a focused set of samples that represent different aspects of organizer signaling. The genomic expression values of each sample are then measured with oligonucleotide arrays. From this data, genes regulated by organizer signaling are selected and then clustered by their patterns of regulation. A new GO biological process annotation of the Xenopus genome allows us to rapidly identify clusters that are highly enriched for known gastrula patterning genes. Within these clusters, we can predict the expression patterns of unknown genes with remarkable accuracy, leading to the discovery of new organizer-related gastrula stage expression patterns for 19 genes. Moreover, the patterns of gene response observed within these clusters allow us to parse apart the contributions of BMP and Wnt inhibition in organizer function. We find that the majority of gastrula patterning genes respond transcriptionally to these activities according to only a few stereotyped patterns, allowing us to describe suites of genes that are likely to share similar regulatory mechanisms. These suites of genes demonstrate a mechanism where BMP inhibition initiates the organizer program before gastrulation, and Wnt inhibition maintains and drives the organizer program during gastrulation.

Publication Title

Genomic analysis of Xenopus organizer function.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP144494
E-cadherin suppresses invasion and promotes metastasis in multiple breast cancer models
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

E-cadherin (E-cad) mediates cell-cell adhesion and has been proposed to suppress both invasion and metastasis. However, invasive ductal cancers retain E-cad expression in the primary tumor, circulating tumor cells, and distant metastases. We recently demonstrated that cancer cell clusters are efficient metastatic seeds. Since clusters organize through cell-cell adhesion, we tested the requirement for E-cad in genetically engineered mouse models of luminal and basal breast cancer. Loss of E-cad increased invasion and dissemination in 3D culture and in the mammary gland. However, E-cad loss also reduced cancer cell proliferation, survival, tumor cell seeding, and metastatic outgrowth in the lungs. At the transcript level, loss of E-cad was associated with increased apoptosis. Consistent with these results, inhibition of apoptosis partially rescued the metastatic phenotype of E-cad null cancer cells. We therefore propose that E-cad is an invasion suppressor, survival factor, and metastasis promoter in invasive ductal cancers. Overall design: Differential gene expression analysis between organoids isolated from adeno-Cre transduced MMTV-PyMT E-cad+/+ (r = 4 biological replicates) and adeno-Cre transduced MMTV-PyMT E-cadfl/fl (r = 5 biological replicates)

Publication Title

E-cadherin is required for metastasis in multiple models of breast cancer.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon SRP065317
Tumor-derived circulating endothelial cell clusters in colorectal cancer
  • organism-icon Homo sapiens
  • sample-icon 53 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

Circulating tumor cells (CTCs) are the subject of several translational studies and clinical trials because their examination could offer an insight into tumor progression and clinical outcomes. Circulating tumor microemboli (CTM) are clusters of CTCs that have been described as malignant entities for over 50 years, although a comprehensive characterization of these cells is still lacking. Contrary to current consensus, we demonstrate that CTM isolated from colorectal cancer patients are not cancerous, but represent a discrete population of tumor-derived endothelial cells. CTM express epithelial and mesenchymal markers that are consistent with previous reports on circulating tumor cell phenotyping. However, they do not mirror the genetic variations of matching tumors. Transcriptome analysis of single-CTM reveals that these structures exhibit an endothelial phenotype, with further results supporting a tumor-derived endothelial lineage. CTM are widespread in blood sampled from preoperative cancer patients but not in healthy donors, suggesting CTM count as a potential biomarker of interest for colorectal cancer. CTM should not be confused with bona fide circulating epithelial tumor cells. The characterization of tumor derived endothelial cell clusters (TECCs) is likely of high diagnostic value, and may provide direct information about the underlying tumor vasculature at the time of diagnosis, during treatment and the course of the disease. Overall design: Profiling of 18 TECCs/CTM from 8 colorectal cancer patients. In addition profiling of matched 7 normal colonic mucosa, 9 primary colorectal tumor samples (of which three from the same patient), one colorectal cancer metastatis. Additionally, 14 laser-capture-dissected endothelia from the same patients and tissues, and 3 commercially available normal endothelial cell lines

Publication Title

Tumor-derived circulating endothelial cell clusters in colorectal cancer.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE49553
Trancriptome analysis in mice deficient for chaperone-mediated autophagy in liver
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The activity of chaperone-mediated autophagy (CMA), a catabolic pathway for selective degradation of cytosolic proteins in lysosomes, decreases with age, but the consequences of this functional decline in vivo remain unknown. In this work, we have generated a conditional knockout mouse to selectively block CMA in liver. We have found that blockage of CMA causes hepatic glycogen depletion and hepatosteatosis. The liver phenotype is accompanied by reduced peripheral adiposity, increased energy expenditure, and altered glucose homeostasis. Comparative lysosomal proteomics revealed that key enzymes in carbohydrate and lipid metabolism are normally degraded by CMA and that impairment of this regulated degradation contributes to the metabolic abnormalities observed in CMA-defective animals. These findings highlight the involvement of CMA in regulating hepatic metabolism and suggest that the age-related decline in CMA may have a negative impact on the energetic balance of old organisms.

Publication Title

Deficient chaperone-mediated autophagy in liver leads to metabolic dysregulation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon E-MTAB-2287
Gene expression profile in wheat TaRZ1-expressing Arabidopsis plant
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Profiling genes that are regulated by the expression of wheat TaRZ1 in Arabidopsis

Publication Title

Comparative functional analysis of wheat (Triticum aestivum) zinc finger-containing glycine-rich RNA-binding proteins in response to abiotic stresses.

Sample Metadata Fields

Age

View Samples
accession-icon E-MEXP-2965
Transcription profiling by array of Arabidopsis overexpressing MYB96 or myb96 knock out mutants
  • organism-icon Arabidopsis thaliana
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

The Arabidopsis MYB96 transcription factor plays a role in abscisic acid (ABA)-mediated drought response. To obtain clues as to how MYB96 promotes drought tolerance, we carried out microarray assays using the Affymetrix GeneChip. Experiment Design: Total RNAs were isolated from whole plants of two-week-old seedling of mutant plants overexpressing MYB96, MYB96-deficient mutants, and wild-types. Three independent biological replicates were performed for each sample.

Publication Title

The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis.

Sample Metadata Fields

Age, Time

View Samples
accession-icon GSE42778
Gene expression microarray analysis on the medial prefrontal cortex and dentate gyrus of Schnurri-2 knockout and wild-type control mice
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Deficiency of schnurri-2, an MHC enhancer binding protein, induces mild chronic inflammation in the brain and confers molecular, neuronal, and behavioral phenotypes related to schizophrenia.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE42777
Gene expression microarray analysis on the dentate gyrus of Schnurri-2 knockout and wild-type control mice
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Schnurri-2 (Shn-2), an NF-kappa B site-binding protein, tightly binds to the enhancers of major histocompatibility complex (MHC) class I genes and inflammatory cytokines, which have been shown to harbor common variant single nucleotide polymorphisms associated with schizophrenia. Shn-2 knockout mice show behavioral abnormalities that strongly resemble those of schizophrenics. We performed gene expression microarray analysis of dentate gyri from Shn-2 knockout and wild-type control mice.

Publication Title

Deficiency of schnurri-2, an MHC enhancer binding protein, induces mild chronic inflammation in the brain and confers molecular, neuronal, and behavioral phenotypes related to schizophrenia.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE42775
Gene expression microarray analysis on the medial prefrontal cortex of Schnurri-2 knockout and wild-type control mice
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Schnurri-2 (Shn-2), an NF-kappa B site-binding protein, tightly binds to the enhancers of major histocompatibility complex (MHC) class I genes and inflammatory cytokines, which have been shown to harbor common variant single nucleotide polymorphisms associated with schizophrenia. Shn-2 knockout mice show behavioral abnormalities that strongly resemble those of schizophrenics. We performed gene expression microarray analysis of prefrontal cortices from Shn-2 knockout and wild-type control mice.

Publication Title

Deficiency of schnurri-2, an MHC enhancer binding protein, induces mild chronic inflammation in the brain and confers molecular, neuronal, and behavioral phenotypes related to schizophrenia.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE41307
Gene expression microarray analysis on hippocampus of Schnurri-2 knockout and wild-type control mice
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Schnurri-2 (Shn-2), an NF-kappa B site-binding protein, tightly binds to the enhancers of major histocompatibility complex (MHC) class I genes and inflammatory cytokines, which have been shown to harbor common variant single nucleotide polymorphisms associated with schizophrenia. Shn-2 knockout mice show behavioral abnormalities that strongly resemble those of schizophrenics. We performed gene expression microarray analysis of hippocampi from Shn-2 knockout and wild-type control mice.

Publication Title

Deficiency of schnurri-2, an MHC enhancer binding protein, induces mild chronic inflammation in the brain and confers molecular, neuronal, and behavioral phenotypes related to schizophrenia.

Sample Metadata Fields

Sex, Specimen part

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact