Rationale Electroconvulsive seizure (ECS) therapy is a nonchemical treatment for depression. Since ECS up-regulates expression of c-Fos in the paraventricular nucleus of hypothalamus (PVN), the function of which is frequently influenced in depression, we hypothesized that ECS modulates functions of the PVN and contributes to its antidepressant effects. Objectives To identify gene expression changes in the mouse PVN by ECS treatment Material and methods First, we established a method to amplify nucleotides from small quantities of RNA. Mice received one shock of ECS and their brains were collected at 2 or 6 h after shock. The PVN was microdissected from dehydrated brain sections, its total RNA was extracted and microarray analysis was applied. Results At 2 h after ECS, 2.6% (589 genes) of the probes showed more than 2-fold decrease, and 0.9% (205 genes) showed more than 2-fold increase. To confirm the expression changes, genes showing differential expression with a wide range in the microarray were analyzed by qPCR. Among the genes with more than 2-fold change by ECS, down-regulated 94 genes and up-regulated 24 genes have been reported the association with anxiety, bipolar disorder or mood disorder by the Ingenuity knowledge database. The groups of down-regulated genes, which are suggested to modulate the function of the PVN or associate to psychiatric disorders, include neuropeptides (Cck), kinases (Prkcb, Prkcc, Camk2a), transcription factors (Bcl6, Tbr1), transporters (Aqp4) and others (Fmr1). Conclusion The present results indicate that ECS treatment can modulate the functions of PVN via a series of gene expression changes, and may contribute to its antidepressant effects at least in part.
Electroconvulsive seizure-induced changes in gene expression in the mouse hypothalamic paraventricular nucleus.
Specimen part, Treatment, Time
View SamplesTo understand the role of prostaglandin (PG) receptor EP2 (Ptger2) signaling in ovulation and fertilization, we investigated time-dependent expression profiles in wild-type (WT) and Ptger2-/- cumuli before and after ovulation by using microarrays.
Expression profiling of cumulus cells reveals functional changes during ovulation and central roles of prostaglandin EP2 receptor in cAMP signaling.
Sex, Specimen part
View SamplesWe also used microarray analysis to examine transcriptomic changes under moderate drought, identifying thousends of genes that potentially mediate moderate drought responses in the flower, including genes encoding transcription factors that likely play crucial regulatory roles.
Moderate drought causes dramatic floral transcriptomic reprogramming to ensure successful reproductive development in Arabidopsis.
Specimen part
View SamplesWe performed microarray to determine transcriptomic changes upon anac019-1 under drought, identifying hundreds of genes that potentially function downstream of ANAC019 and mediate drought responses in the flower, including genes encoding transcription factors that likely play crucial regulatory roles.
ANAC019 is required for recovery of reproductive development under drought stress in Arabidopsis.
Specimen part
View SamplesCircadian rhythms are oscillations with a periodicity of 24 hours that are controlled by an endogenous clock and are observed in virtually all aspects of mammalian function from expression of genes to complex physiological processes. The master clock is present in the suprachiasmatic nucleus (SCN) in the anterior part of the hypothalamus and controls peripheral clocks present in other parts of the body . Although much is known about the mechanism of the central clock in the SCN, the regulation of clocks present in peripheral tissues is still unclear. This study is designed to examine fluctuations in gene expression in lungs within the 24 hour circadian cycle in normal animals. The objectives of this study is to identify and analyze circadian oscillation in gene expression in lungs, and to identify the role of circadian regulation in coordinating the functioning of this dynamic organ.
Light-dark oscillations in the lung transcriptome: implications for lung homeostasis, repair, metabolism, disease, and drug action.
Specimen part
View SamplesWe also used microarray analysis to examine transcriptomic changes under drought, identifying thousands of genes that potentially mediate drought responses in the flower, including genes encoding transcription factors that likely play crucial regulatory roles.
Flower development under drought stress: morphological and transcriptomic analyses reveal acute responses and long-term acclimation in Arabidopsis.
Specimen part
View SamplesWe used microarray analysis to examine transcriptomic changes upon dreb1a under drought, identifying hundreds of genes that potentially function downstream of DREB1A and mediate drought responses in the flower, including genes encoding transcription factors that likely play crucial regulatory roles.
Flower development under drought stress: morphological and transcriptomic analyses reveal acute responses and long-term acclimation in Arabidopsis.
Specimen part
View SamplesCircadian rhythms are oscillations with a periodicity of 24 hours that are controlled by an endogenous clock and are observed in virtually all aspects of mammalian function from expression of genes to complex physiological processes. The master clock is present in the suprachiasmatic nucleus (SCN) in the anterior part of the hypothalamus and controls peripheral clocks present in other parts of the body. Although much is known about the mechanism of the central clock in the SCN, the regulation of clocks present in peripheral tissues is still unclear. This study is designed to examine fluctuations in gene expression in abdominal white adipose tissue within the 24 hour circadian cycle in normal animals. The objectives of this study is to identify and analyze circadian oscillation in gene expression in white adipose tissue, and to identify the role of circadian regulation in coordinating the functioning of this dynamic tissue.
Circadian variations in gene expression in rat abdominal adipose tissue and relationship to physiology.
Sex, Specimen part
View SamplesTHREE INDEPENDENT REPLICATES AND ARE THE CONTROL NON-INFECTED CELLS:
Modulation of NB4 promyelocytic leukemic cell machinery by Anaplasma phagocytophilum.
No sample metadata fields
View Samples56 breast cancer cell lines were profiled to identify patterns of gene expression associated with subtype and response to therapeutic compounds. Overall design: Cell lines were profiled in their baseline, unperturbed state.
Modeling precision treatment of breast cancer.
No sample metadata fields
View Samples