refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 161 results
Sort by

Filters

Technology

Platform

accession-icon GSE45161
Expression data from in vivo experiment comparing untreated controls with animals treated with bevacizumab (Avastin)
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Bevacizumab induces glioblastoma resistance in two in vivo xenograft models. Two cell lines were developed with acquired resistance to bevacizumab. Gene expression difference were analyzed between treated and untreated tumors.

Publication Title

Acquired resistance to anti-VEGF therapy in glioblastoma is associated with a mesenchymal transition.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE93054
Gene expression in GSCs with shALKBH5
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

Knocking down ALKBH5 in Glioma Stem Cells resulted in an altered gene expression profile

Publication Title

m<sup>6</sup>A Demethylase ALKBH5 Maintains Tumorigenicity of Glioblastoma Stem-like Cells by Sustaining FOXM1 Expression and Cell Proliferation Program.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE63963
Validation of EZH2 targets in GSCs treated with shNT (control), shMELK, shFOXM1, and EZH2 overexpression
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

We demonstrate that the catalytic subunit of Polycomb Repressive Complex 2, EZH2, is targeted by the MELK-FOXM1 complex, which in turn promotes resistance to radiation in GSCs. Clinically, EZH2 and MELK are co-expressed in GBM and significantly induced in post-irradiation recurrent tumors whose expression inversely correlated with patient prognosis. Through gain-and loss-of-function study, our data show that MELK or FOXM1 contributes on GSC radioresistance by regulation of EZH2.

Publication Title

EZH2 protects glioma stem cells from radiation-induced cell death in a MELK/FOXM1-dependent manner.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE20281
The transcriptional network for mesenchymal transformation of brain tumours
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 108 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The transcriptional network for mesenchymal transformation of brain tumours.

Sample Metadata Fields

Time

View Samples
accession-icon GSE19114
A transcriptional module initiates and maintains mesenchymal transformation in brain tumors [human data]
  • organism-icon Homo sapiens
  • sample-icon 74 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Using a novel combination of cellular-network reverse-engineering algorithms and experimental validation assays, we identified a transcriptional module, including six transcription factors that synergistically regulates the mesenchymal signature of malignant glioma. This is a poorly understood molecular phenotype, never observed in normal neural tissue. It represents the hallmark of tumor aggressiveness in high-grade glioma, and its upstream regulation is so far unknown. Overall, the newly discovered transcriptional module regulates >74% of the signature genes, while two of its transcription factors (C/EBP and Stat3) display features of initiators and master regulators of mesenchymal transformation. Ectopic co-expression of C/EBP and Stat3 is sufficient to reprogram neural stem cells along the aberrant mesenchymal lineage, while simultaneously suppressing differentiation along the default neural lineages (neuronal and glial). Conversely, silencing the two transcription factors in human glioma cell lines and glioblastoma-derived tumor initiating cells leads to collapse of the mesenchymal signature with corresponding loss of tumor aggressiveness in vitro and in immunodeficient mice after intracranial injection. In human tumor samples, combined expression of C/EBP and Stat3 correlates with mesenchymal differentiation of primary glioma and is a predictor of poor clinical outcome. Taken together, these results reveal that activation of a small regulatory module inferred from the accurate reconstruction of transcriptional networks is necessary and sufficient to initiate and maintain an aberrant phenotypic state in eukaryotic cells.

Publication Title

The transcriptional network for mesenchymal transformation of brain tumours.

Sample Metadata Fields

Time

View Samples
accession-icon GSE19113
A transcriptional module initiates and maintains mesenchymal transformation in brain tumors [mouse data]
  • organism-icon Mus musculus
  • sample-icon 34 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Using a novel combination of cellular-network reverse-engineering algorithms and experimental validation assays, we identified a transcriptional module, including six transcription factors that synergistically regulates the mesenchymal signature of malignant glioma. This is a poorly understood molecular phenotype, never observed in normal neural tissue. It represents the hallmark of tumor aggressiveness in high-grade glioma, and its upstream regulation is so far unknown. Overall, the newly discovered transcriptional module regulates >74% of the signature genes, while two of its transcription factors (C/EBP and Stat3) display features of initiators and master regulators of mesenchymal transformation. Ectopic co-expression of C/EBP and Stat3 is sufficient to reprogram neural stem cells along the aberrant mesenchymal lineage, while simultaneously suppressing differentiation along the default neural lineages (neuronal and glial). Conversely, silencing the two transcription factors in human glioma cell lines and glioblastoma-derived tumor initiating cells leads to collapse of the mesenchymal signature with corresponding loss of tumor aggressiveness in vitro and in immunodeficient mice after intracranial injection. In human tumor samples, combined expression of C/EBP and Stat3 correlates with mesenchymal differentiation of primary glioma and is a predictor of poor clinical outcome. Taken together, these results reveal that activation of a small regulatory module, inferred from the accurate reconstruction of transcriptional networks, is necessary and sufficient to initiate and maintain an aberrant phenotypic state in eukaryotic cells.

Publication Title

The transcriptional network for mesenchymal transformation of brain tumours.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP069235
Gene expression in human glioblastoma specimens
  • organism-icon Homo sapiens
  • sample-icon 32 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq3000

Description

We assessed global gene expression changes in 32 human glioblastoma specimens Overall design: Human mRNA profiles of 32 glioblastoma specimens, were obtained by sequencing on Illumina HiSeq 3000

Publication Title

Glioblastoma-infiltrated innate immune cells resemble M0 macrophage phenotype.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE85615
Epigenetic Activation of WNT5A Drives Glioblastoma Stem Cell Differentiation and Invasive Growth
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Chromatin and transcriptome comparisons of matched NSCs and derivative GSCs reveal activation of WNT5A and an EC signature

Publication Title

Epigenetic Activation of WNT5A Drives Glioblastoma Stem Cell Differentiation and Invasive Growth.

Sample Metadata Fields

Disease, Disease stage

View Samples
accession-icon GSE49009
A Proneural to Mesenchymal Transition Mediated by NFkB Promotes Radiation Resistance in Glioblastoma
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Mesenchymal differentiation mediated by NF-κB promotes radiation resistance in glioblastoma.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE49161
A Proneural to Mesenchymal Transition Mediated by NFkB Promotes Radiation Resistance in Glioblastoma (part 1)
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

SUMMARY Despite numerous genome-wide association studies involving glioblastoma (GBM), few therapeutic targets have been identified for this disease. Using patient derived glioma sphere cultures (GSCs), we have found that a subset of the proneural (PN) GSCs undergo transition to a mesenchymal (MES) state in a TNFa/NFkB dependent manner with an associated enrichment of CD44 sub-populations and radio-resistant phenotypes. To the contrary, MES GSCs exhibit constitutive NFkB activation, CD44 enrichment and radio-resistance. Patients whose tumors exhibit a higher MES metagene, increased expression of CD44, or activated NFkB were associated with poor radiation response and shorter survival. Our results indicate that NFkB activation mediated MES differentiation and radiation resistance presents an attractive therapeutic target for GBM.

Publication Title

Mesenchymal differentiation mediated by NF-κB promotes radiation resistance in glioblastoma.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact