We performed RNA-seq experiments to identify differentially expressed intergenic transcripts between gastric cancer and normal tissues/cells. Overall design: Three primary cell culture samples from gastric cancer tissues, three gastric cancer cell lines and two normal tissue samples were used for the experiments.
A known expressed sequence tag, BM742401, is a potent lincRNA inhibiting cancer metastasis.
Specimen part, Cell line, Subject
View SamplesEmerging evidence has shown that noncoding RNAs, particularly microRNAs (miRNAs), contribute to the pathogenesis of mood and anxiety disorders, although the molecular mechanisms are poorly understood. Here we show altered levels of miR-17-92 in adult hippocampal neural progenitors have a significant impact in neurogenesis and anxiety- and depression-related behaviors in mice. miR-17-92 deletion in adult neural progenitors causes a decrease, while its overexpression an increase of neurogenesis in the dentate gyrus, through regulating genes in the glucocorticoid pathway, especially serum- and glucocorticoid-inducible protein kinase-1 (Sgk1). miR-17-92 knockout mice show anxiety- and depression-like behaviors, whereas miR-17-92 overexpressing mice exhibit anxiolytic and antidepression-like behaviors. Furthermore, we show that miR-17-92 expression in the adult mouse hippocampus responds to chronic stress, and miR-17-92 rescues proliferation defects, induced by corticosterone, in hippocampal neural progenitors. Our study uncovers a crucial role for miR-17-92 in adult neural progenitors to regulate neurogenesis and anxiety- and depression-like behaviors. Overall design: Hippocampal mRNA profiles of 13-week old wildtype and miR-17-92 knockout mice were generated by whole RNA-sequencing, using IlluminaHiSeq1000.
miR-17-92 Cluster Regulates Adult Hippocampal Neurogenesis, Anxiety, and Depression.
Specimen part, Cell line, Subject
View SamplesIn this study, we have integrated RNA-seq data from subcellular fractionated RNA (i.e., cytoplasm, nucleoplasm, and chromatin-associated) with GRO-seq data using a novel bioinformatics pipeline. This has yielded a comprehensive catalog of polyadenylated lncRNAs in MCF-7 cells, about half of which have not been annotated previously and about a quarter of which are estrogen-regulated. Knockdown of selected lncRNAs, such as lncRNA152 and lncRNA67 followed by RNA-seq suggest that these lncRNAs regulate the expression of cell cycle genes. Overall design: characterization of long noncoding RNAs
Discovery, Annotation, and Functional Analysis of Long Noncoding RNAs Controlling Cell-Cycle Gene Expression and Proliferation in Breast Cancer Cells.
No sample metadata fields
View SamplesAnalysis of genes in GSCs and differentiated cells that are induced by MG132 treatment.
Glioma-derived cancer stem cells are hypersensitive to proteasomal inhibition.
Specimen part, Treatment
View SamplesThe transcription factor Helios is expressed in a large subset of Foxp3+ Tregs of both mouse and man. We previously demonstrated that Treg induced in peripheral sites (pTreg) from Foxp3- T conventional (Tconv) cells were Helios- and proposed that Helios is a marker of thymic derived Treg (tTreg). To compare the two Treg subpopulations, we generated Helios-GFP reporter mice and crossed them to Foxp3-RFP reporter mice. The Helios+ Treg population expressed a more activated phenotype and had a higher suppressive capacity in vitro. Both populations expressed a highly demethylated TSDR and both subsets were equivalent in their ability to suppress inflammatory bowel disease in vivo. However, Helios+ Treg more effectively inhibited the proliferation of activated, autoreactive splenocytes from scurfy mice. When Helios+ and Helios- Treg were transferred to lymphoreplete mice, both populations maintained comparable Foxp3 expression, but Foxp3 expression was less stable in Helios- Treg when transferred to lymphopenic mice. Gene expression profiling of the two populations demonstrated a large number of differentially expressed genes and that Helios- Treg subpopulation expressed certain genes normally expressed in CD4+Foxp3- T cells. TCR repertoire analysis indicated very little overlap between Helios+ and Helios- Treg. Thus, Helios+ and Helios- Treg subpopulations are phenotypically and functionally distinct, consistent with thymic and peripheral sites of origin, respectively. Because of their superior suppressive activity and enhanced stability Foxp3+Helios+ Treg represent the optimal Treg population for cellular immunotherapy. Overall design: 5 replicates of wildtype vs knockout Helios gene in Treg cells.
Helios<sup>+</sup> and Helios<sup>-</sup> Treg subpopulations are phenotypically and functionally distinct and express dissimilar TCR repertoires.
Specimen part, Subject
View SamplesGenes encoding the circadian pacemaker in the hypothalamic suprachiasmatic nuclei (SCN) of mammals have recently been identified, but the molecubasis of circadian timing in peripheral tissue is not well understood. We used a bead-based microarray to identify mouse liver transcripts that show circadian cycles of abundance under constant conditions.
Comprehensive analysis of microRNA-mRNA co-expression in circadian rhythm.
Sex, Age, Specimen part
View SamplesWe used a novel approach to study the acute effect of three physiologic stressors (active contractions, vibration, and systemic heat stress) in human skeletal muscle. Three hours after the completion of a dose of physiologic stress, we sampled the soleus (contraction and vibration) or vastus lateralis (heat) muscle and developed a unique gene expression signature for each stressor. We discovered repetitive active muscle contractions up regulated metabolic transcription factors NR4A3 (12.45 fold change), PGC-1 (5.46 fold change), and ABRA (5.98 fold change); and repressed MSTN (0.56 fold change). Heat stress repressed PGC-1 (0.74 fold change); while vibration induced FOXK2 (2.36 fold change). Vibration similarly caused a down regulation of MSTN (0.74 fold change), but to a lesser extent than active muscle contraction. Vibration induced FOXK2 while heat stress repressed PGC-1 (0.74 fold change) and ANKRD1 genes (0.51 fold change). These findings support a distinct gene regulation in response to heat stress, vibration, and muscle contractions. Understanding these responses may assist in developing regenerative rehabilitation interventions to improve muscle cell development, growth, and repair.
Distinct Skeletal Muscle Gene Regulation from Active Contraction, Passive Vibration, and Whole Body Heat Stress in Humans.
Sex, Specimen part
View SamplesNK cells from NKDxIL15tg mice spleens and bone marrow were purified by FACS. NK cells from IL15tg mice spleens were purified by FACS.
Distal-less homeobox transcription factors regulate development and maturation of natural killer cells.
No sample metadata fields
View SamplesRecent advances in direct reprogramming using cell type-specific transcription factors provide an unprecedented opportunity for rapid generation of desired human cell types from easily accessible tissues. However, due to the diversity of conversion factors that facilitate the process, an arduous screening step is inevitable to find the appropriate combination(s). Here, we show that under chemically defined conditions minimal pluripotency factors are sufficient to directly reprogram human fibroblasts into stably self-renewing neural progenitor/stem cells (NSCs), but without passing through a pluripotent intermediate stage. These NSCs can be expanded and propagated in vitro without losing their potential to differentiate into various neuronal subtypes and glia. Our direct reprogramming strategy represents a simple and advanced paradigm of direct conversion that will provide an unlimited source of human neural cells for cell therapy, disease modeling, and drug screening.
Small molecules enable OCT4-mediated direct reprogramming into expandable human neural stem cells.
No sample metadata fields
View SamplesWistar rats, purchased from BRL (Fullinsdorf/BL, Switzerland), and WBN/Kob rats, purchased from SLC Inc. (Shizuoka, Japan), were specific pathogen-free. Rats were housed in groups of maximally 4 instandard cages (1,820 cm2 bottom area) and kept in our animal facility for various time periods between 1 week and 36 weeks (free access to standard rat chow and water; specific pathogen-free conditions; 20 degree C; day/night cycle simulated by artificial lighting of 50 lx from 7 a.m. to 7 p.m., dimmed in the remaining hours to almost complete darkness; air humidity 50 to 60%). Prior to surgery or sacrifice, the rats were fasted overnight (16 to18 h) with free access to water. All manipulations conformed with the Swiss Federal Guidelines on Animal Experiments and were approved by the local ethics committee.
Inflammation-dependent expression of SPARC during development of chronic pancreatitis in WBN/Kob rats and a microarray gene expression analysis.
Sex, Age, Specimen part, Time
View Samples