We compared the prognostic significance of ectodomain isoforms of the epidermal growth factor receptor (EGFR), which lack the tyrosine kinase (TK) domain, with that of the full length receptor and its autophosphorylation status in cervical cancers treated with conventional chemoradiotherapy.
Membranous expression of ectodomain isoforms of the epidermal growth factor receptor predicts outcome after chemoradiotherapy of lymph node-negative cervical cancer.
Specimen part
View SamplesWe explored the prognostic impact of the dynamic contrast enhanced MR imaging (DCE-MRI) parameter ABrix in cervical cancer combined with global gene expression data to reveal the underlying molecular phenotype of the parameter and construct a gene signature that reflected ABrix. Based on 78 cervical cancer patients subjected to curative chemoradiotherapy, we identified a prognostic ABrix parameter by pharmacokinetic analysis of DCE-MR images based on the Brix model, where tumors with low ABrix appeared to be most aggressive. Gene set enrichment analysis of 46 tumors with pairwise DCE-MRI and gene expression data showed a significant correlation between ABrix and the hypoxia gene sets, whereas gene sets related to proliferation, radioresistance, and wound healing were not significant. Hypoxia gene sets specific for cervical cancer created in cell culture experiments, including targets of the hypoxia inducible factor (HIF1) and the unfolded protein response (UPR), were the most significant. In the remaining 32 tumors, low ABrix was associated with upregulation of HIF1 protein expression, as assessed by immunohistochemistry, consistent with increased hypoxia. Based on the hypoxia gene sets, a signature of 31 genes that were upregulated in tumors with low ABrix was constructed. This DCE-MRI hypoxia gene signature showed prognostic impact in an independent validation cohort of 109 patients.
Hypoxia-induced gene expression in chemoradioresistant cervical cancer revealed by dynamic contrast-enhanced MRI.
Specimen part, Cell line, Treatment
View SamplesWe performed integrative gene dosage and expression profiling to identify candidate target genes of the prognostic 3p loss in cervical cancer.
Identification of eight candidate target genes of the recurrent 3p12-p14 loss in cervical cancer by integrative genomic profiling.
Specimen part, Cell line
View SamplesProtein and mRNA levels for several selenoproteins, such as glutathione peroxidase-1 (Gpx1), are down-regulated dramatically by selenium (Se) deficiency.
Selenium toxicity but not deficient or super-nutritional selenium status vastly alters the transcriptome in rodents.
Specimen part, Treatment
View SamplesGenome-wide expression analysis in C. Elegans grown in axenic media with low to toxic selenium concentrations
Toxic-selenium and low-selenium transcriptomes in Caenorhabditis elegans: toxic selenium up-regulates oxidoreductase and down-regulates cuticle-associated genes.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Inhibition of Endothelial NOTCH1 Signaling Attenuates Inflammation by Reducing Cytokine-Mediated Histone Acetylation at Inflammatory Enhancers.
Specimen part
View SamplesNotch1 is a key regulator of endothelial cell behaviour. This experiment was designed to identify genes regulated by Notch1 signaling in inflammatory activated mouse endothelial cells.
Inhibition of Endothelial NOTCH1 Signaling Attenuates Inflammation by Reducing Cytokine-Mediated Histone Acetylation at Inflammatory Enhancers.
Specimen part
View SamplesProinflammatory activation of endothelial cells leads to recruitment of leukocytes by upregulation of adhesion molecules and presentation of chemoattractants. In response to such activation there is also a strong shift in the endothelial expression of Notch ligands, with downregulation of Dll4 and a upregulation of JAG1. To assess whether Jagged1 would affect the endothelial activation profile, we suppressed JAG1 expression during IL-1-induced activation by means of siRNA and performed a genome-wide transcriptome analysis. Our results show for the first time that Jagged1 modulates the transcription profile of activated endothelial cells and describe data that imply a role for Jagged1 in sharpening the inflammatory profile of the vasculature, giving it an edge towards leukocyte recruitment. These findings imply that Jagged1 might be a potential therapeutic target to attenuate inflammation and reduce tissue damage in inflammatory diseases.
Inhibition of Endothelial NOTCH1 Signaling Attenuates Inflammation by Reducing Cytokine-Mediated Histone Acetylation at Inflammatory Enhancers.
Specimen part
View SamplesInflammatory activation of endothelial cells enables leukocyte recruitment to tissues. We here investigate how Notch1 signaling affects the transcriptional profile of inflammatory activated human umbilical vein cells.
Inhibition of Endothelial NOTCH1 Signaling Attenuates Inflammation by Reducing Cytokine-Mediated Histone Acetylation at Inflammatory Enhancers.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genome-wide analysis reveals conserved transcriptional responses downstream of resting potential change in Xenopus embryos, axolotl regeneration, and human mesenchymal cell differentiation.
Sex, Specimen part
View Samples