PI3K/AKT pathway plays one of pivotal roles in breast cancer development and maintenance. PIK3CA, coding PIK3 catalytic subunit, is the oncogene which shows the high frequency of gain-of-function mutations leading to the PI3K/AKT pathway activation in breast cancer. In particular in the ER-positive breast tumors PIK3CA mutations have been observed in 30% to 40%. However, genes expressed in connection to the pathway activation in breast tumorigenesis remain largely unknown.
Gene expression profiling reveals new aspects of PIK3CA mutation in ERalpha-positive breast cancer: major implication of the Wnt signaling pathway.
Sex, Age, Specimen part
View SamplesPeriodontitis affects 47.1% of adult population in the U.S. Porphyromonas gingivalis is an opportunistic oral pathogen that colonizes the oral mucosa, invades myeloid dendritic cells and accesses the bloodstream, brain, placenta and other organs in human with periodontitis. Periodontitis also sustains a chronic long-term pro-inflammatory immune disorder, potentially contributing to other systemic conditions such as cardiovascular disease, type 2 diabetes mellitus, adverse pregnancy outcomes, and osteoporosis. However, the role of P. gingivalis minor and major fimbriae in DC-SIGN-TLR2 crosstalk during traverses from oral mucosa to these distant sites and its influence on survival of P. gingivalis within DCs and its immune-mechanism involve at molecular/transcriptome level has not been examined. In this study to address the role of fimbriae we utilized defined bacterial mutants that solely express minor fimbriae (Mfa1+Pg), major fimbriae (FimA+Pg) or are deficient in both fimbriae (MFB) and compared with un-infected control. P. gingivalis strains were maintained anaerobically (10% H2, 10% CO2, and 80% N2) in a Forma Scientific anaerobic system glove box model 1025/1029 at 37°C in Difco anaerobe broth MIC. Mutant strains were maintained using erythromycin (5 µg/ml) for mutant Mfa1+Pg, tetracycline (2 µg/ml) for mutant FimA+Pg and both erythromycin and tetracycline for double fimbriae mutant MFB. Bacterial suspensions were washed five times in PBS and re-suspended for spectrophotometer reading at OD 660 nm of 0.11, which previously determined to be equal to 5 x 107 CFU. For bacterial CFSE staining, the suspension were washed (3 times) and re-suspended in 5 µM of CFSE in PBS. The bacteria were incubated for 30 min at 37°C in the dark. MoDCs were pulsed with Pg381, Mfa1+Pg, FimA+Pg and MFB at 10 MOI and incubated with the MoDCs for 12 hours and each experimental condition was performed in triplicate. Overall design: To facilitate our understanding on host immunity and defense mechanism of this pathogen, here we used the Illumina High-throughput RNA-seq transcriptome profiling to investigate the myeloid dendritic cells response to oral Amphibiont (1. Pg381, 2. Mfa1+Pg, 3. FimA+Pg, 4. MFB and 5. Un-infected control group).
Oral Pathobiont Activates Anti-Apoptotic Pathway, Promoting both Immune Suppression and Oncogenic Cell Proliferation.
No sample metadata fields
View SamplesPrimary mielofibrosis (PMF) is a rare chronic myeloproliferative disorder characterized by the accumulation of abnormal megakaryocytes (Mks) in the bone marrow (BM), variable degrees of BM fibrosis, osteosclerosis and angiogenesis, immature myeloid and erythroid cells, and tear-drop erythrocytes in the peripheral blood (PB), and extramedullary hematopoiesis. The identification of the JAK2V617F mutation represented a seminal discovery in the field of Philadelphia-chromosomenegative chronic myeloproliferative neoplasms (MPNs), providing clues to the pathogenesis, prompting a revision of the diagnostic criteria, and culminating in the development of clinical trials with JAK2 (and JAK1) inhibitors. The JAK2V617F mutation occurs in almost all patients with polycythemia vera (PV) and in 50%-70% of those with essential thrombocythemia (ET) and primary myelofibrosis (PMF). Soon after the identification of the JAK2V617F mutation, mutations in JAK2 exon 12 were described in rare patients with JAK2V617F-negative PV and mutations in MPL were reported in 5%-10% of ET or PMF subjects. The complexity of the molecular pathogenesis of MPNs is reinforced by discovery of additional mutations in TET2, ASXL1, CBL, IDH1/IDH2, EZH2 and IKZF1. These mutations are detected in a minority of patients at different phases of the disorder, including leukemic transformation, and are variably associated each other and with JAK2 or MPL mutations.
Mutations and prognosis in primary myelofibrosis.
Specimen part, Disease
View Samplesabout 250 genes were significantly changed after Gata4 and Gata6 were specifically deleted in the pancreatic progenitor cells Overall design: 6 pancreatic buds were pooled for the control, and 12 pancreatic buds were pooled for the Pdxcre; Gata4fl/fl; Gata6fl/fl. Libraries were prepared from total RNA (RIN>8) with the TruSeq RNA prep kit (Illumina) and sequenced using the HiSeq2000 (Illumina) instrument. More than 20 million reads were mapped to the mouse genome (UCSC/mm9) using Tophat (version 2.0.4) with 4 mismatches and 10 maximum multiple hits. Significantly differentially expressed genes were calculated using DEseq
GATA4 and GATA6 regulate pancreatic endoderm identity through inhibition of hedgehog signaling.
Specimen part, Disease, Subject
View SamplesHepatitis C virus (HCV) is widely used to investigate host-virus interactions and cellular responses to infection have been extensively studied in vitro. In human liver, interferon (IFN) stimulated gene expression can mask direct transcriptional responses to virus infection. To better characterize the direct effects of HCV infection in vivo, we analyze the transcriptomes of HCV-infected patients lacking an activated endogenous IFN system. We show that the expression changes observed in these patients predominantly reflect immune cell infiltrates rather than changes in cell-intrinsic metabolic pathways. We also investigate the transcriptomes of patients with endogenous IFN activation, which paradoxically cannot eradicate viral infection. We find that most IFN-stimulated genes (ISGs) are induced by both the endogenous IFN system and by recombinant IFN therapy, but with significantly higher induction levels in the latter. We conclude that the innate host immune response in chronic hepatitis C is too weak to clear the virus. Overall design: In this study, we aimed to disentangle the direct and indirect effects of HCV infection on cellular transcriptional profiles, by performing a detailed characterization of the gene expression changes associated with HCV infection, endogenous IFN system activation and pegIFNa treatment in the human liver. With this objective, we generated and analyzed high-throughput transcriptome sequencing profiles from liver biopsies derived from different categories of HCV-infected and non-infected patients, prior to and during treatment. First, to unveil HCV-induced cell-autonomous effects and to separate them from IFN-induced changes in the transcriptome, we selected liver biopsies from patients with chronic hepatitis C (CHC) without hepatic ISG induction, and compared them with un-infected control biopsies. Second, we examined the transcriptomic changes associated with the endogenous activation of the IFN system. Finally, we analyzed the gene expression changes resulting from pegIFNa/ribavirin treatment, by comparing transcriptome data from liver biopsies obtained before treatment and at different time points during the first week of therapy.
Transcriptional response to hepatitis C virus infection and interferon-alpha treatment in the human liver.
Specimen part, Treatment, Subject
View SamplesExamined the expression effects of supplementing Drosophila food on heart and nephrocyte complexes
Diet-Induced Podocyte Dysfunction in Drosophila and Mammals.
Sex, Specimen part, Treatment
View SamplesWe report the transcriptome changes that result of the genomic deletion of one or two alleles of an islet-specific long non-coding RNA (Blinc1) in isolated pancreas from e15.5 mouse embryos. Overall design: Pancreas from e15.5 embryos were dissected and total RNA extracted. Libraries were prepared from total RNA (RIN>8) with the TruSeq RNA prep kit (Illumina) and sequenced using the HiSeq2000 (Illumina) instrument. More than 20 million reads were mapped to the mouse genome (UCSC/mm9) using Tophat (version 2.0.4) with 4 mismatches and 10 maximum multiple hits. Significantly differentially expressed genes were calculated using DEseq.
βlinc1 encodes a long noncoding RNA that regulates islet β-cell formation and function.
Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Transcriptome analysis of human diabetic kidney disease.
Specimen part, Disease, Disease stage, Subject
View SamplesWe identified 1,700 differentially expressed probesets in DKD glomeruli and 1,831 in diabetic tubuli; 330 probesets were commonly differentially expressed in both compartments. The canonical complement signaling pathway was determined to be statistically differentially regulated in both DKD glomeruli and tubuli and was associated with increased glomerulosclerosis even in an additional set of DKD samples.
Transcriptome analysis of human diabetic kidney disease.
Specimen part, Disease, Disease stage, Subject
View SamplesWe identified 1,700 differentially expressed probesets in DKD glomeruli and 1,831 in diabetic tubuli; 330 probesets were commonly differentially expressed in both compartments. The canonical complement signaling pathway was determined to be statistically differentially regulated in both DKD glomeruli and tubuli and was associated with increased glomerulosclerosis even in an additional set of DKD samples.
Transcriptome analysis of human diabetic kidney disease.
Specimen part, Disease, Disease stage, Subject
View Samples