refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 4 of 4 results
Sort by

Filters

Technology

Platform

accession-icon GSE23073
Transcriptome profiling of genes regulated by RXR and its partners in monocyte-derived dendritic cells
  • organism-icon Homo sapiens
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

CD14+ human monocytes differentiating into DCs in the presence of IL4 and GM-CSF were treated with agonists for RXR and its partners or vehicle 18 hours after plating (experiment with RXR and permissive partners, donor 1-3) or 14 hours after plating (experiment with nonpermissive partners, donor 4-6). Cells were harvested 12 hours thereafter. Experiments were performed in biological triplicates representing samples from three different donors.

Publication Title

Research resource: transcriptome profiling of genes regulated by RXR and its permissive and nonpermissive partners in differentiating monocyte-derived dendritic cells.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE13762
Comparative gene expression profile of 1,25-dihydroxyvitamin D3-treated human monocyte-derived dendritic cells
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We have carried out global gene expression analysis to clarify the interrelationship between 1,25-dihydroxyvitamin D3 and differentiation-driven gene expression patterns in developing human monocyte-derived dendritic cells. Monocytes were treated with 10 nM 1,25-dihydroxyvitamin D3 or vehicle 14 hours after plating for 12 hours or 5 days. Monocytes, differentiating dendritic cells (+/-1,25-dihydroxyvitamin D3 for 12 hours) and immature dendritic cells (+/-1,25-dihydroxyvitamin D3 for 5 days) were harvested. This design allows one to identify genes regulated by differentiation and/or 1,25-dihydroxyvitamin D3 in human monocyte-derived dendritic cells.

Publication Title

1,25-dihydroxyvitamin D3 is an autonomous regulator of the transcriptional changes leading to a tolerogenic dendritic cell phenotype.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE23618
Transcriptome profiling of dendritic cell subtypes
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In this study transcriptome profiling of dendritic cell subtypes was performed using various human dendritic cells.

Publication Title

Research resource: transcriptome profiling of genes regulated by RXR and its permissive and nonpermissive partners in differentiating monocyte-derived dendritic cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE57512
Identification of TLR3 regulated genes in CD8 positive Dendritic cell line
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

CD8 positive dendritic cell line , stimulated with or without TLR3 ligand polyI:C

Publication Title

TLR3-Mediated CD8+ Dendritic Cell Activation Is Coupled with Establishment of a Cell-Intrinsic Antiviral State.

Sample Metadata Fields

Specimen part, Treatment

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact