Previously we reported that a recombinant vaccinia virus (VACV) carrying a light-emitting fusion gene enters, replicates in, and reveals the locations of tumors in mice. A new recombinant VACV, GLV-1h68, as a simultaneous diagnostic and therapeutic agent, was constructed by inserting three expression cassettes (encoding Renilla luciferase-green fluorescent protein (RUC-GFP) fusion, b-galactosidase, and b-glucuronidase) into the F14.5L, J2R (encoding thymidine kinase, TK), and A56R (encoding hemagglutinin, HA) loci of the viral genome, respectively. Intravenous (i.v.) injections of GLV-1h68 (1 107 pfu/mouse) into nude mice with established (500 mm3) subcutaneous (s.c.) GI-101A human breast tumors were used to evaluate its toxicity, tumor targeting specificity and oncolytic efficacy. GLV-1h68 demonstrated an enhanced tumor targeting specificity and much reduced toxicity compared to its parental LIVP strains. The tumors colonized by GLV-1h68 exhibited growth, inhibition, and regression phases followed by tumor eradication within 130 days in 95% of the mice tested. Tumor regression in live animals was monitored in real time based on decreasing light emission, hence demonstrating the concept of a combined oncolytic virus-mediated tumor diagnosis and therapy system. Transcriptional profiling of regressing tumors based on a mouse-specific platform revealed gene expression signatures consistent with immune defense activation, inclusive of interferon stimulated genes (STAT-1 and IRF-7), cytokines, chemokines and innate immune effector function. These findings suggest that immune activation may combine with viral oncolysis to induce tumor eradication in this model, providing a novel perspective for the design of oncolytic viral therapies for human cancers.
Eradication of solid human breast tumors in nude mice with an intravenously injected light-emitting oncolytic vaccinia virus.
No sample metadata fields
View SamplesPancreatic cancer is a fatal disease associated with resistance to conventional therapies. GLV-1h153 is an oncolytic virus which has shown promise for the targeted treatment of cancer, and is engineered to carry the human sodium iodide symporter (hNIS) for the imaging of viral replication within tumors via enhanced uptake of several radionuclide probes.
Molecular network, pathway, and functional analysis of time-dependent gene changes associated with pancreatic cancer susceptibility to oncolytic vaccinia virotherapy.
Specimen part, Disease, Cell line, Time
View SamplesAnalysis of gene expression profile of B16-F10 murine melanoma cells exposed to hypoxic conditions (1% oxygen) or hypoxia mimicry (cobalt chloride) for 24 hours. Gene expression profiles were analyzed using MG-U74Av2 oligonucleotide microarrays. Data analysis revealed 2541 probesets (FDR<5%) for 1% oxygen experiment and 364 probesets (FDR<5%) for cobalt chloride, that showed differences in expression levels. Analysis of hypoxia-regulated genes (1% O2) by stringent Family-Wise Error Rate estimation indicated 454 significantly changed transcripts (p<0.05). The most upregulated genes were Lgals3, Selenbp1, Nppb (more than ten-fold increase). Both hypoxia and hypoxia-mimicry induced HIF-1 regulated genes. However, unsupervised analysis (Singular Value Decomposition) revealed distinct differences between gene expression induced by these two experimental conditions.
Gene expression profile of B 16(F10) murine melanoma cells exposed to hypoxic conditions in vitro.
Cell line
View SamplesRNA sequencing on LNCaP cells was carried out to study how tunicamycin-induced gene expression is affected by knockdown of EIF2AK3 and ATF4. Overall design: Samples from the below setup (treatments protocol) were harvested from four independent experiments. RNA integrity of total RNA samples was assessed by Bioanalyzer. All samples had RIN = 9.7.
The kinase PERK and the transcription factor ATF4 play distinct and essential roles in autophagy resulting from tunicamycin-induced ER stress.
Specimen part, Cell line, Treatment, Subject
View SamplesThe transcription factor farnesoid X receptor (FXR) governs bile acid and energy homeostasis, is involved in inflammation, and has protective functions in the liver. In the present study we investigated the effect of Fxr deficiency in mouse precision cut liver slices (PCLS) exposed to a model hepatotoxicant cyclosporin A (CsA). It was anticipated that Fxr deficiency could aggravate toxicity of CsA in PCLS and pinpoint to novel genes/processes regulated by FXR.
Cyclosporin A induced toxicity in mouse liver slices is only slightly aggravated by Fxr-deficiency and co-occurs with upregulation of pro-inflammatory genes and downregulation of genes involved in mitochondrial functions.
No sample metadata fields
View SamplesBackground and Aims: Gene expression analysis of colon biopsies using high-density oligonucleotide microarray can contribute to the understanding of local pathophysiological alterations and to functional classification of precancerous adenoma, different stage colorectal carcinomas (CRC) and inflammatory bowel diseases (IBD).
Evaluation of microarray preprocessing algorithms based on concordance with RT-PCR in clinical samples.
No sample metadata fields
View SamplesThe life cycle of human papillomaviruses (HPV) is strictly linked to the differentiation of their natural host cells. The HPV E6 and E7 oncoproteins can delay the normal differentiation program of keratinocytes, however, the exact mechanisms responsible for this have not yet been identified. The goal of this study was to investigate the effects of HPV16 oncoproteins on the expression of genes involved in keratinocyte differentiation. Primary human keratinocytes transduced by LXSN (control) retroviruses or virus vectors expressing HPV16 E6, E7 or E6/E7 genes were subjected to gene expression profiling. The results of microarray analysis showed that HPV 16 E6 and E7 have the capacity to down-regulate the expression of several genes involved in keratinocyte differentiation. Quantitative real-time polymerase chain reaction (qRT-PCR) assays were performed to confirm microarray data. To investigate the effects of the HPV oncoproteins on the promoters of selected keratinocyte differentiation genes, luciferase reporter assays were performed. Our results suggest that the HPV 16 E6 and/or E7 oncogenes are able to down-regulate the expression of several genes involved in keratinocyte differentiation, at least partially by down-regulating their promoter activity. This activity of the HPV oncoproteins may have a role in the productive virus life cycle, and also in virus induced carcinogenesis.
Transcriptional regulation of genes involved in keratinocyte differentiation by human papillomavirus 16 oncoproteins.
Specimen part
View SamplesMost of the breast cancer samples used in clinical research contain multiple cell types other than epithelial cells alone. The non-epithelial cell types have have a substantial effect on the gene expression-profile, which is used to define molecular subtypes of the tumours. The purpose of this data set is to retrieve gene-expression profile within tumour epithelial cells. We collected 9 breast cancer epithelial cell lines and 5 tumour sampes from which epithelial cells were sorted and enriched using BerEp4 antibody coated beads. We profiled the mRNA expression level of these samples and classified probe sets into epithelial genes which were those genes with present calls in at least 50% of the samples. Then we derived an 23-gene signature based on only the epithelial genes to stratify breast cancer.
Minimising immunohistochemical false negative ER classification using a complementary 23 gene expression signature of ER status.
Specimen part
View SamplesIntegrated DNA and expression array analysis in primary human breast tumors identified chromosome 8q22 copy number gain and a suite of over-expressed genes in this region highly relevant to subsequent recurrence.
Amplification of LAPTM4B and YWHAZ contributes to chemotherapy resistance and recurrence of breast cancer.
Age, Specimen part, Subject
View SamplesDysregulated oncogenic serine/threonine kinases play a pathological role in diverse forms of malignancies, including multiple myeloma (MM), and thus represent potential therapeutic targets. Here, we evaluated the biological and functional role of p21-activated kinase 4 (PAK4), and its potential as a new target in MM for clinical applications. PAK4 promoted MM cell growth and survival via activation of MM survival signaling pathways, including the MEK-ERK pathway. Furthermore, treatment with orally bioavailable PAK4 allosteric modulator (KPT-9274) significantly impacted MM cell growth and survival in a large panel of MM cell lines and primary MM cells alone and in the presence of bone marrow microenvironment. Intriguingly, we have identified FGFR3 as a novel binding partner of PAK4 and observed significant activity of KPT-9274 against t(4;14)-positive MM cells. These data support PAK4 as an oncogene in myeloma, and provide the rationale for the clinical evaluation of PAK4 modulator in myeloma.
Functional role and therapeutic targeting of p21-activated kinase 4 in multiple myeloma.
Specimen part, Cell line
View Samples