Using a combination of cell sorting and microarray analysis, we identified almost 200 genes as having a high level of expression in the notochord.
Integrated microarray and ChIP analysis identifies multiple Foxa2 dependent target genes in the notochord.
Sex
View SamplesBackground: The Spemann/Mangold organizer is a transient tissue critical for patterning the gastrula stage vertebrate embryo and formation of the three germ layers. Despite its important role during development, there are still relatively few genes with specific expression in the organizer and its derivatives. Foxa2 is a forkhead transcription factor that is absolutely required for formation of the mammalian equivalent of the organizer, the node, the axial mesoderm and the definitive endoderm (DE). However, the targets of Foxa2 during embryogenesis, and the molecular impact of organizer loss on the gastrula embryo, have not been well defined.
Microarray analysis of Foxa2 mutant mouse embryos reveals novel gene expression and inductive roles for the gastrula organizer and its derivatives.
Sex
View SamplesThe zebrafish is a powerful model for the study of hematopoietic stem and progenitor cells (HSPC). We have developed a novel HSPC-specific transgenic line (Runx1+23:GFP). We have used this line in time-lapse live imaging studies to track the migration of HSPC during development. We have also performed a chemical genetic screen to find small molecules that modulate HSPC numbers during development. Treating embryos from 2-3 days post fertilization (2-3 dpf) then fixing for in situ staining with HSPC probes cmyb and runx1, we found the compound lycorine increased HSPC numbers. Applying this compound during time-lapse live imaging showed increased accumulation of Runx+ HSPC in the caudal hematopoietic tissue (CHT). Treatment from 2-3 dpf, then washing off the compound, had a sustained effect on the size of the HSPC with Runx+ numbers higher at 5 and 7 dpf.
Hematopoietic stem cell arrival triggers dynamic remodeling of the perivascular niche.
Specimen part, Treatment
View SamplesThe microenvironment is an important regulator of hematopoietic stem and progenitor cell (HSPC) biology. Interactions between the niche and stem cells have been difficult to track, but recent advances marking fluorescent HSPCs have allowed exquisite visualization in the caudal hematopoietic tissue (CHT) of the developing zebrafish. Sinusoidal endothelial cells interact closely with HSPCs as they colonize this niche. Here we show that the chemokine cxcl8 and its receptor, cxcr1, are abundantly expressed by zebrafish endothelial cells and we identify cxcl8/cxcr1 signaling as a positive regulator of HSPC colonization using genetic gain- and loss-of-function techniques. Single-cell tracking experiments demonstrated that this effect is due to an increase in HSPC “cuddling” by endothelial cells, thereby increasing CHT residency time and allowing more HSPC cell divisions to occur. Enhanced cxcl8/cxcr1 signaling was associated with an increase in the volume of the CHT and induction of cxcl12a expression, favoring HSPC colonization. Finally, using parabiotic zebrafish, we show that cxcr1 acts stem cell non-autonomously to improve the efficiency of donor HSPC engraftment. This work identifies a mechanism by which the hematopoietic niche remodels to promote HSPC engraftment and suggests that cxcl8/cxcr1 signaling is a potential therapeutic target in patients undergoing hematopoietic stem cell transplantation. Overall design: Kdrl:mcherry and kdrl:mcherry;kdrl:cxcr1 zebrafish were dissociated and endothelial cells purified by FACS. RNA-seq libraries were prepared from endothelial cells purified from two independent clutches of fish (four libraries total).
CXCR1 remodels the vascular niche to promote hematopoietic stem and progenitor cell engraftment.
No sample metadata fields
View SamplesThe microenvironment is an important regulator of hematopoietic stem and progenitor cell (HSPC) biology. Interactions between the niche and stem cells have been difficult to track, but recent advances marking fluorescent HSPCs have allowed exquisite visualization in the caudal hematopoietic tissue (CHT) of the developing zebrafish. Sinusoidal endothelial cells interact closely with HSPCs as they colonize this niche. Here we show that the chemokine cxcl8 and its receptor, cxcr1, are abundantly expressed by zebrafish endothelial cells and we identify cxcl8/cxcr1 signaling as a positive regulator of HSPC colonization using genetic gain- and loss-of-function techniques. Single-cell tracking experiments demonstrated that this effect is due to an increase in HSPC “cuddling” by endothelial cells, thereby increasing CHT residency time and allowing more HSPC cell divisions to occur. Enhanced cxcl8/cxcr1 signaling was associated with an increase in the volume of the CHT and induction of cxcl12a expression, favoring HSPC colonization. Finally, using parabiotic zebrafish, we show that cxcr1 acts stem cell non-autonomously to improve the efficiency of donor HSPC engraftment. This work identifies a mechanism by which the hematopoietic niche remodels to promote HSPC engraftment and suggests that cxcl8/cxcr1 signaling is a potential therapeutic target in patients undergoing hematopoietic stem cell transplantation. Overall design: Primary human endothelial cells were serum starved for 12 hours followed by treatment with recombinant human CXCL8 or vehicle control for 6 hours. Total RNA was collected from biological duplicates and RNA-seq libraries were prepared.
CXCR1 remodels the vascular niche to promote hematopoietic stem and progenitor cell engraftment.
Specimen part, Subject
View SamplesHaematopoietic stem and progenitor cell (HSPC) transplant is a widely used treatment for life-threatening conditions including leukemia; however, the molecular mechanisms regulating HSPC engraftment of the recipient niche remain incompletely understood. Here, we developed a competitive HSPC transplant method in adult zebrafish, using in vivo imaging as a non-invasive readout. We used this system to conduct a chemical screen and identified epoxyeicosatrienoic acids (EET) as a family of lipids that enhance HSPC engraftment. EETs’ pro-haematopoietic effects are conserved in the developing zebrafish, where this molecule promotes HSPC specification through activating a unique AP-1/runx1 transcription program autonomous to the haemogenic endothelium. This effect requires the activation of PI3K pathway, specifically PI3Kg. In adult HSPCs, EETs induce transcriptional programs including AP-1 activation, modulating multiple cellular processes, such as migration, to promote engraftment. Finally, we demonstrated that the EET effects on enhancing HSPC homing and engraftment are conserved in mammals. Our study established a novel method to explore the molecular mechanisms of HSPC engraftment, and discovered a previously unrecognized, evolutionarily conserved pathway regulating multiple haematopoietic generation and regeneration processes. EETs may have clinical application in marrow or cord blood transplantation. Overall design: To analyze the effect of 11,12-EET on gene expression of human blood cells, we treated human CD34+ cells (positively selected from cord blood) and the human leukemic cell line U937 with 5uM 11,12-EET for 2 hrs. Control treatment was done with DMSO.
Epoxyeicosatrienoic acids enhance embryonic haematopoiesis and adult marrow engraftment.
No sample metadata fields
View SamplesDramatic changes of gene expressions are known to occur in human endometrial stromal cells (ESC) during decidualization. The changes in gene expression are associated with changes of chromatin structure, which are regulated by epigenetic mechanisms such as histone modifications. Here, we investigated genome-wide changes in histone modifications and mRNA expressions associated with decidualization in human ESC using chromatin immunoprecipitation (ChIP) combined with next-generation sequencing. ESC were incubated with estradiol and medroxyprogesterone acetate for 14 days to induce decidualization. The ChIP-sequence data showed that induction of decidualization increased H3K27ac and H3K4me3 signals in many genomic regions but decreased in only a few regions. Most (80%) of the H3K27ac-increased regions and half of the H3K4me3-increased regions were located in the distal promoter regions (more than 3 kb upstream or downstream of the transcription start site). RNA-sequence showed that induction of decidualization up-regulated 881 genes, 223 of which had H3K27ac- or H3K4me3-increased regions in the proximal and distal promoter regions. Induction of decidualization increased the mRNA levels of these genes more than it increased the mRNA levels of genes without H3K27ac- or H3K4me3-increased regions. Pathway analysis revealed that up-regulated genes with the H3K27ac- or H3K4me3-increased regions were associated with insulin signaling. These results show that histone modification statuses genome-widely change in human ESC by induction of decidualization. The main changes of histone modifications are increases of H3K27ac and H3K4me3 in both the proximal and distal promoter regions, which are involved in the up-regulation of gene expression that occurs during decidualization. Overall design: mRNA profiles of human endometrial stromal cells with and without EP inductions for 2 individuals. (EP induction: induction with estradiol (10-8 M) and medroxyprogesterone acetate (10-6 M))
Genome-wide DNA methylation analysis revealed stable DNA methylation status during decidualization in human endometrial stromal cells.
No sample metadata fields
View SamplesDetermine allele level expression in hybrid mice of different ages Overall design: RNASeq - HybridMouseDRN
Diverse Non-genetic, Allele-Specific Expression Effects Shape Genetic Architecture at the Cellular Level in the Mammalian Brain.
Sex, Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genome-wide DNA methylation analysis reveals a potential mechanism for the pathogenesis and development of uterine leiomyomas.
Sex, Specimen part, Disease, Disease stage
View SamplesProfiles of genome-wide DNA methylation were investigated in leiomyomas and in myometrium with and without leiomyomas. Profiles of DNA methylation in the myometrium with and without leiomyomas were quite similar while those in leiomyomas were distinct.
Genome-wide DNA methylation analysis reveals a potential mechanism for the pathogenesis and development of uterine leiomyomas.
Sex, Specimen part, Disease, Disease stage
View Samples