refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 188 results
Sort by

Filters

Technology

Platform

accession-icon SRP015409
iMir: An integrated pipeline for high-throughput miRNA-Seq data analysis
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

We report a novel modular pipeline (iMir) for comprehensive analysis of miRNA-Seq data, from linker removal and sequence quality check to differential expression and biological target prediction, integrating multiple open source modules and resources linker together in an automated flow. Overall design: Development of an integrated pipeline (iMir) for comprehensive analysis of miRNA-Seq experiment.

Publication Title

iMir: an integrated pipeline for high-throughput analysis of small non-coding RNA data obtained by smallRNA-Seq.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP051628
Estrogen Receptor Beta Impacts Hormone-Induced Alternative mRNA Splicing in Breast Cancer Cells
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq1500

Description

Estrogens play an important role in breast cancer (BC) development and progression, where the two isoforms of the estrogen receptor (ERa and ERß) are generally co-expressed and mediate the effects of these hormones in cancer cells. ERß has been suggested to exert an antagonist role toward the oncogenic activities of ERa, and for this reason it is considered an oncosuppressor. As clinical evidence regarding a prognostic role for this receptor subtype in hormone-responsive BC is still limited and conflicting, more knowledge is required on the biological functions of ERß in cancer cells. We described previously the ERß and ERa interactomes of BC cells, identifying specific and distinct patterns of protein interactions for the two receptors. In particular, we identified factors involved in mRNA splicing and maturation as important components of both ERa and ERß pathways. Guided by these findings, we investigated here in depth the differences in the early transcriptional events and RNA splicing patterns induced in ERa vs ERa+ERß cells, by expressing ERß in ERa+ human BC MCF-7 cells. High-throughput mRNA sequencing was then performed in both cell lines after stimulation with 17b-estradiol, and the results obtained were compared. Overall design: We investigated here in depth the differences in the early transcriptional events and RNA splicing patterns induced in ERa vs ERa+ERß cells, by expressing ERß in ERa+ human BC MCF-7 cells. High-throughput mRNA sequencing was then performed in both cell lines after stimulation with 17b-estradiol, and the results obtained were compared.

Publication Title

Estrogen receptor beta impacts hormone-induced alternative mRNA splicing in breast cancer cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP040505
RNA sequencing identifies specific PIWI-interacting small non-coding RNA expression patterns in breast cancer
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq1500, IlluminaGenomeAnalyzerIIx

Description

PIWI-interacting RNAs (piRNAs) are a novel class of small ncRNAs initially isolated from germ line cells; although recent studies report that they are expressed also in somatic cells. To elucidate the role of piRNAs in somatic cells, in particular from breast cancer, we performed the first extensive next generation sequencing expression analysis of small RNA transcriptomes of hormone responsive breast cancer cell lines in different culture conditions. In addition, to understand the behavior of piRNAs with respect to miRNAs in breast tumor tissues, small RNA sequence data set available in Gene Expression Omnibus (GSE39162) database was used. Results led to the identification of ~100 and ~150 human piRNAs in the breast cancerous cell lines and tumors respectively, several of which differentially expressed in cell lines under different experimental conditions tested or in response to ERß and in tumor tissues. Western blotting and Q-PCR analysis also revealed the presence in breast cell lines of PIWIL (PIWI Like) subfamily members proteins encoded in the human genome (PIWIL2/HILI and PIWIL4/HIWI2) and of other components of the piRNA biogenesis pathways, suggesting that this might indeed be functional in somatic cells. These results show that piRNAs are expressed in human somatic cells, in particular in cancer, where their expression is influenced by neoplastic transformation, growth conditions and estrogen receptor beta. More important, we demonstrate for the first time a distinct pattern of piRNAs expression in cancerous vs normal breast tissues, which suggests a potential role of these epigenetic modulators in mammary carcinogenesis and maintenance of the cancer cell phenotype. Overall design: In addition, to understand the behavior of piRNAs with respect to miRNAs in breast tumor tissues, small RNA sequence data set available in Gene Expression Omnibus (GEO; GSM957192 TAX577740T ,GSM957194 TAX577740N, GSM957195 TAX577453T, GSM957197 TAX577453N, GSM957198 TAX577745T, GSM957200 TAX577745N, GSM957201 TAX577579T, GSM957203 TAX577579N) was used.

Publication Title

RNA sequencing identifies specific PIWI-interacting small non-coding RNA expression patterns in breast cancer.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP064981
Gut Microbiota Orchestrates Energy Homeostasis during Cold [RNA-Seq]
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Microbial functions in the host physiology are a result of co-evolution between microbial communities and their hosts. Here we show that cold exposure leads to marked shift of the microbiota composition, referred to as cold microbiota. Transplantation of the cold microbiota to germ-free mice is sufficient to increase the insulin sensitivity of the host, and enable complete tolerance to cold partly by promoting the white fat browning, leading to increased energy expenditure and fat loss. During prolonged cold however, the body weight loss is attenuated, caused by adaptive mechanisms maximising caloric uptake and increasing intestinal, villi and microvilli lengths. This increased absorptive surface is promoted by the cold microbiota - effect that can be diminished by co-transplanting the most downregulated bacterial strain from the Verrucomicrobia phylum, Akkermansia muciniphila, during the cold microbiota transfer. Our results demonstrate the microbiota as a key factor orchestrating the overall energy homeostasis during increased demand. Overall design: Mice were kept 30 days at room temperature or at 6C, 2 per cage, under SPF conditions, with or without administration of antibiotic coctail in drinking water (whole microbiota depletion). Fasted 5h before sacrifice. Segments of proximal jejunum were isoated, flushed gently with PBS and frozen. Each of 12 samples is a pool of two biological replicates (2 biological replicates of the same condition combined into one sample)

Publication Title

Gut Microbiota Orchestrates Energy Homeostasis during Cold.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE21839
Transcriptome analysis of wild type E. coli (K-12 MG1655) comparing to mutant E. coli strain (ECOM4) under aerobic and anaerobic conditions
  • organism-icon Escherichia coli str. k-12 substr. mg1655
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix E. coli Genome 2.0 Array (ecoli2)

Description

Cytochrome oxydases and quinol monooxygenase were removed from the E. coli genome resulting in oxygen-independent physiology

Publication Title

Deletion of genes encoding cytochrome oxidases and quinol monooxygenase blocks the aerobic-anaerobic shift in Escherichia coli K-12 MG1655.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE60963
Alteration of mRNA and microRNA expression profiles in rat muscular type vasculature in early postnatal development
  • organism-icon Rattus norvegicus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st), Affymetrix Multispecies miRNA-3 Array (mirna3)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Alteration of mRNA and microRNA expression profiles in rat muscular type vasculature in early postnatal development.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE60961
Alteration of mRNA and microRNA expression profiles in rat muscular type vasculature in early postnatal development [mRNA]
  • organism-icon Rattus norvegicus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

This study tested the hypothesis that mRNA expression profiles change in the muscular type rat saphenous artery during early postnatal development. To explore this, we performed mRNA microarray analysis on muscular type saphenous arteries of young (10-12 days) and adult (2-3 months) rats.

Publication Title

Alteration of mRNA and microRNA expression profiles in rat muscular type vasculature in early postnatal development.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE25944
Role of STAT3 in DU145 prostate cancer cell line
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

STAT3 suppresses transcription of proapoptotic genes in cancer cells with the involvement of its N-terminal domain.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE25866
Expression data from DU145 cells treated with ST3-Hel2A-2 STAT3 N-domain inhibitor coupled to analysis of genome-wide STAT3 binding sites
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Activation of Signal Transducer and Activator of Transcription 3 (STAT3) is common in prostate cancers. STAT3 may induce cell proliferation and resistance to apoptosis, as well as promote tumor angiogenesis, invasion, and migration by activating gene expression. Many STAT3-dependent transcriptional responses are mediated through protein-protein interactions that involve the amino-terminal domain (N-domain).

Publication Title

STAT3 suppresses transcription of proapoptotic genes in cancer cells with the involvement of its N-terminal domain.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE25867
Expression data from DU145 cells treated with STAT3 siRNA
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Activation of Signal Transducer and Activator of Transcription 3 (STAT3) is common in prostate cancers. STAT3 may induce cell proliferation and resistance to apoptosis, as well as promote tumor angiogenesis, invasion, and migration by activating gene expression. Many STAT3-dependent transcriptional responses are mediated through protein-protein interactions that involve the amino-terminal domain (N-domain).

Publication Title

STAT3 suppresses transcription of proapoptotic genes in cancer cells with the involvement of its N-terminal domain.

Sample Metadata Fields

Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact