Hemangioblasts are known as the common precursors for primitive hematopoietic and endothelial lineages. Their existence has been supported mainly by the observation that both cell types develop in close proximity and by in vitro differentiation and genetic studies. However, more compelling evidence will arise from tracking their cell fates using a lineage-specific marker. We report the identification of a hemangioblast-specific enhancer (Hb) located in the cis-regulatory region of chick Cerberus gene (cCer) that is able to direct the expression of enhanced green fluorescent protein (eGFP) to the precursors of yolk sac blood and endothelial cells in electroporated chick embryos. Moreover, we present the Hb-eGFP reporter as a powerful live imaging tool for visualizing hemangioblast cell fate and blood island morphogenesis. We hereby introduce the Hb enhancer as a valuable resource for genetically targeting the hemangioblast population as well as for studying the dynamics of vascular and blood cell development.
Targeting the hemangioblast with a novel cell type-specific enhancer.
Specimen part
View SamplesGermline stem cell self-renewal and differentiation are required for sustained production of gamates. GSC differentiation in drosophila requires expression of setdb1 by the somatic niche, however its function is not known.
Transposon Dysregulation Modulates dWnt4 Signaling to Control Germline Stem Cell Differentiation in Drosophila.
Specimen part
View SamplesWe performed whole-genome stability measurements for MDA-MB-231 and its highly metastatic derivative MDA-LM2. Our goal was to identify post-transcriptonal regulons that are deregulated en route to higher metastatic capacity. Overall design: Cells were pulsed with 4-thiouridine for 2 hours and then RNA was extracted at 0, 2, 4, and 7 hr time-points in quadruplicate from each cell line. 4sU labeling followed by RNA-seq was then used to measure the abundance of transcripts in each population. A decay rate was estimated based on the rate at which transcript abundance was reduced at these time-points.
Metastasis-suppressor transcript destabilization through TARBP2 binding of mRNA hairpins.
Cell line, Subject, Time
View SamplesWe generated animals carrying a genomically integrated mir-124 promoter::gfp transgene and identified mir-124 promoter::GFP labelled cells as a subset of the C. elegans sensory neurons. We used fluorescence activated cell sorting (FACS) to isolate four distinct cell populations: mir-124 expressing (GFP+) and non-expressing (GFP-) cells from both wild-type and mutant animals. RNA samples obtained from the four cell populations were used for Affymetrix gene expression analysis to study the effect of mir-124 deletion on the transcriptome of mir-124 expressing (GFP+) and non-expressing (GFP-) cells.
The microRNA miR-124 controls gene expression in the sensory nervous system of Caenorhabditis elegans.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Endometrial-peritoneal interactions during endometriotic lesion establishment.
No sample metadata fields
View SamplesThe pathophysiology of endometriotic lesion development remains unclear but involves a complex interaction between ectopic endometrium and host peritoneal tissues. We hypothesised that disruption of this interaction was likely to suppress endometriotic lesion formation. We hoped to delineate the molecular and cellular dialogue between ectopic human endometrium and peritoneal tissues in nude mice, as a first step towards testing this hypothesis. Human endometrium was xenografted into nude mice and the resulting lesions were analysed using microarrays. A novel technique was developed that unambiguously determined whether RNA transcripts identified by the microarray analyses originated from human cells (endometrium) or mouse cells (stroma). Four key pathways (ubiquitin/proteosome, inflammation, tissue remodelling/repair and ras-mediated oncogenesis) were revealed, that demonstrated communication between host stromal cells and ectopic endometrium.
Endometrial-peritoneal interactions during endometriotic lesion establishment.
No sample metadata fields
View SamplesThe pathophysiology of endometriotic lesion development remains unclear but involves a complex interaction between ectopic endometrium and host peritoneal tissues. We hypothesised that disruption of this interaction was likely to suppress endometriotic lesion formation. We hoped to delineate the molecular and cellular dialogue between ectopic human endometrium and peritoneal tissues in nude mice, as a first step towards testing this hypothesis. Human endometrium was xenografted into nude mice and the resulting lesions were analysed using microarrays. A novel technique was developed that unambiguously determined whether RNA transcripts identified by the microarray analyses originated from human cells (endometrium) or mouse cells (stroma). Four key pathways (ubiquitin/proteosome, inflammation, tissue remodelling/repair and ras-mediated oncogenesis) were revealed, that demonstrated communication between host stromal cells and ectopic endometrium.
Endometrial-peritoneal interactions during endometriotic lesion establishment.
No sample metadata fields
View SamplesWe considered the possibility that removal of E2F4, as a key regulator of cellular quiescence, would cause systemic perturbations in the expression of E2F4 bound genes involved in cell cycle and proliferation. To test whether these pertubrations were reflected in the adult tissues' gene expression programs, we compared the gene expression profile of E2F4 double knockout mice to the gene expression found in identical tissues from E2F4 heterozygous littermates, that are phenotypically normal. We selected liver, testes, and kidney to profile by gene expression analysis, because two of these tissues are affected at some point during development when E2F4 is missing.
Cell cycle genes are the evolutionarily conserved targets of the E2F4 transcription factor.
Sex, Age, Specimen part, Disease, Disease stage, Subject
View SamplesPurpose: Epidemiological and intervention studies have attempted to link the health effects of a diet rich in fruits and vegetables with the consumption of polyphenols and their impact in neurodegenerative diseases. Studies have shown that polyphenols can cross the intestinal barrier and reach concentrations in the bloodstream able to exert effects in vivo. However, the effective uptake of polyphenols in the brain is still regarded with some reservations. Here we describe a combination of approaches to examine the putative transport of blackberry-digested polyphenols (BDP) across the blood-brain barrier (BBB) and ultimate evaluation of their beneficial effects.
Blood-brain barrier transport and neuroprotective potential of blackberry-digested polyphenols: an in vitro study.
Sex, Specimen part, Cell line, Race
View SamplesTo compare the transcriptome profiles of the two principal histological variants of malignant germ cell tumor that occur in childhood
Pediatric malignant germ cell tumors show characteristic transcriptome profiles.
No sample metadata fields
View Samples