Huntington''s disease (HD) is an autosomal dominant neurodegenerative disorder that is characterized by motor, cognitive, and psychiatric alterations. The mutation responsible for this disease is an abnormally expanded and unstable CAG repeat within the coding region of the gene encoding huntingtin (Htt). Knock-in mouse models of HD with human exon 1 containing expanded CAG repeats inserted in the murine huntingtin gene (Hdh) provide a genetic reconstruction of the human causative mutation within the mouse model. The goal of this study is RNA expression profiling by RNA sequencing (RNA-seq) in 2, 6, and 10 month old knock-in mice with CAG lengths of 20, 80, 92, 111, 140, 175 along with littermate control wild-type animals Overall design: mRNA expression profiles were obtained via RNA-seq analysis performed on tissue samples from the cortex of 2, 6, and 10 month old knock-in mice with CAG lengths of 20, 80, 92, 111, 140, 175 along with littermate control wild-type animals.
Integrated genomics and proteomics define huntingtin CAG length-dependent networks in mice.
No sample metadata fields
View SamplesHuntington''s disease (HD) is an autosomal dominant neurodegenerative disorder that is characterized by motor, cognitive, and psychiatric alterations. The mutation responsible for this disease is an abnormally expanded and unstable CAG repeat within the coding region of the gene encoding huntingtin (Htt). Knock-in mouse models of HD with human exon 1 containing expanded CAG repeats inserted in the murine huntingtin gene (Hdh) provide a genetic reconstruction of the human causative mutation within the mouse model. The goal of this study is RNA expression profiling by RNA sequencing (RNA-seq) in 6 and 10 month old knock-in mice with CAG lengths of 20, 50, 92, 140 along with littermate control wild-type animals Overall design: mRNA expression profiles were obtained via RNA-seq analysis performed on samples from the Corpus Striatum tissue of 6 and 10 month old knock-in mice with CAG lengths of 20, 50, 92, 140 along with littermate control wild-type animals.
Integrated genomics and proteomics define huntingtin CAG length-dependent networks in mice.
Sex, Age, Specimen part, Cell line, Subject
View SamplesHuntington''s disease (HD) is an autosomal dominant neurodegenerative disorder that is characterized by motor, cognitive, and psychiatric alterations. The mutation responsible for this disease is an abnormally expanded and unstable CAG repeat within the coding region of the gene encoding huntingtin (Htt). Knock-in mouse models of HD with human exon 1 containing expanded CAG repeats inserted in the murine huntingtin gene (Hdh) provide a genetic reconstruction of the human causative mutation within the mouse model. The goal of this study is RNA expression profiling by RNA sequencing (RNA-seq) in 6 and 10 month old knock-in mice with CAG lengths of 20, 50, 92, 140 along with littermate control wild-type animals Overall design: mRNA expression profiles were obtained via RNA-seq analysis performed on samples from the Cerebral Cortex tissue of 6 and 10 month old knock-in mice with CAG lengths of 20, 50, 92, 140 along with littermate control wild-type animals.
Integrated genomics and proteomics define huntingtin CAG length-dependent networks in mice.
Sex, Age, Specimen part, Cell line, Subject
View SamplesHuntington''s disease (HD) is an autosomal dominant neurodegenerative disorder that is characterized by motor, cognitive, and psychiatric alterations. The mutation responsible for this disease is an abnormally expanded and unstable CAG repeat within the coding region of the gene encoding huntingtin (Htt). Knock-in mouse models of HD with human exon 1 containing expanded CAG repeats inserted in the murine huntingtin gene (Hdh) provide a genetic reconstruction of the human causative mutation within the mouse model. The goal of this study is RNA expression profiling by RNA sequencing (RNA-seq) in 6 and 10 month old knock-in mice with CAG lengths of 20, 50, 92, 140 along with littermate control wild-type animals Overall design: mRNA expression profiles were obtained via RNA-seq analysis performed on samples from the Liver tissue of 6 and 10 month old knock-in mice with CAG lengths of 20, 50, 92, 140 along with littermate control wild-type animals.
Integrated genomics and proteomics define huntingtin CAG length-dependent networks in mice.
Sex, Age, Specimen part, Cell line, Subject
View SamplesAcute renal allograft rejection is an important complication in kidney transplantation. Accurate diagnosis of rejection events is necessary for timely response and treatment. We illustrate the usefulness and biological relevance of selected multivariate approaches to detect rejection from genomic and proteomic signals. The data was used to study gene expression changes using whole genome microarray analysis of peripheral blood from subjects with acute rejection (n=20) and non-rejecting controls (n=20) to obtain insight into the molecular and biological causation of acute renal allograft rejection when combined with proteomics (iTRAQ) data for the same patients/time-points.
Novel multivariate methods for integration of genomics and proteomics data: applications in a kidney transplant rejection study.
Sex, Specimen part, Race
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Peripheral blood gene expression changes during allergen inhalation challenge in atopic asthmatic individuals.
Sex, Age, Specimen part
View SamplesTo determine differential gene expression in peripheral blood of asthmatic individuals undergoing allergen inhalation challenge, post-challenge compared to pre-challenge
Peripheral blood gene expression changes during allergen inhalation challenge in atopic asthmatic individuals.
Sex, Age, Specimen part
View SamplesDetecting differential changes in the peripheral whole-blood transcriptome, post-challenge compared to pre-challenge; using non-globin reduced PAXgene (PAX.NGR) tubes
Peripheral blood gene expression changes during allergen inhalation challenge in atopic asthmatic individuals.
Sex, Age, Specimen part
View SamplesDetecting differential changes in the peripheral whole-blood transcriptome, post-challenge compared to pre-challenge; using globin reduced PAXgene (PAX.GR) tubes
Peripheral blood gene expression changes during allergen inhalation challenge in atopic asthmatic individuals.
Sex, Age, Specimen part
View SamplesAcute cardiac allograft rejection is a serious complication of heart transplantation. Investigating molecular processes in whole blood via microarrays is a promising avenue of research in transplantation, particularly due to the non-invasive nature of blood sampling. However, whole blood is a complex tissue and the consequent heterogeneity in composition amongst samples is ignored in traditional microarray analysis. This complicates the biological interpretation of microarray data. Here we have applied a statistical deconvolution approach, cell-specific significance analysis of microarrays (csSAM), to whole blood samples from subjects either undergoing acute heart allograft rejection (AR) or not (NR). We identified eight differentially expressed probe-sets significantly correlated to monocytes (mapping to 6 genes, all down-regulated in ARs versus NRs) at a false discovery rate (FDR) <= 15%. None of the genes identified are present in a biomarker panel of acute heart rejection previously published by our group and discovered in the same data.
White blood cell differentials enrich whole blood expression data in the context of acute cardiac allograft rejection.
No sample metadata fields
View Samples