Briefly, the well characterized female hES cell line H9 was allowed to differentiate into a clonally purified mortal splanchnopleuric mesodermal somatic cell line EN13. The EN13 line was subsequently virally reprogrammed back to an induced pluripotent state (we term re-H9) using OCT4, SOX2, KLF4 retroviral vectors creating isogenic lines of hESC, hiPSC and mortal cells. Our results reveal several important differences between embryo-derived H9 and the induced re-H9 stem cells. We find a dysregulation of genes involved in imprinting and altered expression of X-chromosome localized genes in re-H9 cells.
Suppression of the imprinted gene NNAT and X-chromosome gene activation in isogenic human iPS cells.
Cell line
View SamplesAnalysis of differences in gene expression between different cell types of the vascular niche. Looking for candidates, that could potentially be up-or downregualted in the different cell types
Pericyte-expressed Tie2 controls angiogenesis and vessel maturation.
Specimen part
View SamplesTo assess the role of the aryl hydrocarbon receptor (AHR) receptor in dendritic epidermal T cells (DETC), we sorted DETC from 2 weeks old mice homozygous and heterozygous for AHR-knockout. While DETC are not maintained in the epidermis of mice with a homozygous AHR-knockout, those in heterozygous mice devellop normally. The age at 2 weeks is critical for the DETC establishment and the peak time of the so-called proliferation burst of DETC in wildtype mice. DETC were identified in epidermal cell suspension by expression of the gamma-delta T cell receptor. The DETC proportion of live epidermal cells was between 10-15 % in Ahr-het and 2-4 % in Ahr-ko mice. After FACS-sorting to a purity of 90-98 %, DETC were lysed and their RNA was extracted. Three RNA samples for each genotype were generated, by pooling the RNA of 2-3 mice for each sample. RNA was processed and hybridized to Applied BiosystemsTM ClariomTM S Mouse Gene Expression Microarrays. Using the Software package R the data were normalized using the Robust Multichip Average algorithm (RMA) and significance of differentially regulated genes was assessed by the False Discovery Rate (FDR) using the Benjamini and Hochberg’s method.
The small chain fatty acid butyrate antagonizes the TCR-stimulation-induced metabolic shift in murine epidermal gamma delta T cells.
Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Sarcoma Cell Line Screen of Oncology Drugs and Investigational Agents Identifies Patterns Associated with Gene and microRNA Expression.
Specimen part, Cell line
View SamplesCharacterization of 68 cell lines derived from human sarcoma and 5 normal counterpart cells, including drug sensitivity testing, gene expression profiling and microRNA expression profiling have been completed. Data and tools for searching these data will be made publicly available through the NCI Developmental Therapeutics Program. The raw data (.cel files ) are provided through the GEO website. Sarcoma represents a variety of cancers at arise from cells of mesenchymal origin and have seen limited treatment advances in the last decade. Drug sensitivity data coupled with the transcription and microRNA profiles of a cohort of sarcoma cell lines may help define novel treatment paradigms.
Sarcoma Cell Line Screen of Oncology Drugs and Investigational Agents Identifies Patterns Associated with Gene and microRNA Expression.
No sample metadata fields
View SamplesAlu SINEs are the most numerous frequently occurring transcription units in our genome and possess sequence competence for transcription by RNA Pol III. However, through poorly understood mechanisms, the Alu RNA levels are maintained at very low levels in normal somatic cells with obvious benefits of low rates of Alu retrotransposition and energy-economical deployment of RNA Pol III to the tRNA genes which share promoter structure and polymerase requirements with Alu SINEs. Using comparative ChIP sequencing, we unveil that a repeat binding protein, CGGBP1, binds to the transcriptional regulatory regions of Alu SINEs thereby impeding Alu transcription by inhibiting RNA Pol III recruitment. We show that this Alu-silencing depends on growth factor stimulation of cells and subsequent tyrosine phosphorylation of CGGBP1. Importantly, CGGBP1 ensures a sequence-specific discriminative inhibition of RNA Pol III activity at Alu promoters, while sparing the structurally similar tRNA promoters. Our data suggest that CGGBP1 contributes to growth-related transcription by preventing the hijacking of RNA Pol III by Alu SINEs.
Growth signals employ CGGBP1 to suppress transcription of Alu-SINEs.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Small Cell Lung Cancer Screen of Oncology Drugs, Investigational Agents, and Gene and microRNA Expression.
Specimen part, Cell line
View SamplesCharacterization of 63 small cell lung cancer (SCLC) cell lines and a comparator set of non-small cell lung cancer and normal counterpart cells, including drug sensitivity testing, gene expression profiling and microRNA expression profiling have been completed. Data and tools for searching these data will be made publicly available through the NCI Developmental Therapeutics Program at http://SCLC.cancer.gov. SCLC is an aggressive, recalcitrant cancer and have seen limited treatment advances in the last 30 years. Drug sensitivity data coupled with the transcription and microRNA profiles of a cohort of SCLC cell lines may help define novel treatment paradigms.
Small Cell Lung Cancer Screen of Oncology Drugs, Investigational Agents, and Gene and microRNA Expression.
Specimen part
View SamplesTranscriptomic profiling of miR-132/212-deficient and WT CD4 T cells isolated from spleens of L donovani infected mice (d28) to determine the effects of miR-132/212 on CD4 T cell activation in vivo. This was combined by transcriptomic analysis of early stage in vitro activated WT and miR-132/212-deficient CD4 T cells to identify direct miR-132/212 targets in CD4 T cells. Overall design: Examination of expression profiles of splenic CD4+ T cells from L. donovani-infected WT (samples 1-4) and miR-132/212-/- mice (samples 5-9) using RNASeq. This was followed by similar RNASeq in naïve CD4+ T-cells in WT and miR-132/212 -/- mice prior to and following 18h of in vitro TCR stimulation under Th1 conditions (samples 10-25).
<i>Malat1</i> Suppresses Immunity to Infection through Promoting Expression of Maf and IL-10 in Th Cells.
Specimen part, Cell line, Subject
View SamplesTo identify patterns of drug-induced gene modulation that occur across different cell types, we measured gene expression changes across NCI-60 cell lines after exposure to 15 anticancer agents. The results were integrated into a database and set of interactive analysis tools, the NCI Transcriptional Pharmacodynamics Workbench (NCI TPW), intended to allow exploration of gene expression modulation, including by molecular pathway, drug target, and association with drug sensitivity. We identified common transcriptional responses across drugs and cell types and uncovered cell signaling pathway–specific gene expression changes associated with drug sensitivity. We also demonstrated the value of this tool for investigating clinically relevant molecular hypotheses, utilizing the NCI TPW to assess drug-induced expression changes in genes associated with immune function and epithelial-mesenchymal transition, and to identify candidate biomarkers for drug activity. The NCI TPW provides a comprehensive resource to facilitate understanding of tumor cell characteristics that define sensitivity to anticancer drugs.
The NCI Transcriptional Pharmacodynamics Workbench: A Tool to Examine Dynamic Expression Profiling of Therapeutic Response in the NCI-60 Cell Line Panel.
Specimen part
View Samples