refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 122 results
Sort by

Filters

Technology

Platform

accession-icon GSE65216
Expression profiling of breast cancer samples from Institut Curie (Maire cohort)
  • organism-icon Homo sapiens
  • sample-icon 351 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Transcriptome analysis of Wnt3a-treated triple-negative breast cancer cells.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE65212
Expression profiling of breast cancer samples from Institut Curie (Maire cohort) -- BrainArray CDF
  • organism-icon Homo sapiens
  • sample-icon 176 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Transcriptome analysis of 130 breast cancer samples (41 TNBC; 30 Her2; 30 Luminal B and 29 Luminal A), 11 normal breast tissue samples and 14 TNBC cell lines.

Publication Title

Transcriptome analysis of Wnt3a-treated triple-negative breast cancer cells.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE65194
Expression profiling of breast cancer samples from Institut Curie (Maire cohort) --Affy CDF
  • organism-icon Homo sapiens
  • sample-icon 175 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Transcriptome analysis of 130 breast cancer samples (41 TNBC; 30 Her2; 30 Luminal B and 29 Luminal A), 11 normal breast tissue samples and 14 TNBC cell lines.

Publication Title

Transcriptome analysis of Wnt3a-treated triple-negative breast cancer cells.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE65238
Transcriptome analysis of Wnt3a-treated triple-negative breast cancer cell lines.
  • organism-icon Homo sapiens
  • sample-icon 35 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

We analyzed the transcriptome of two different triple negative breast cancer (TNBC) cell lines to define a comprehensive list of Wnt target genes. Cells were treated with Wnt3a for 6h, 12h or 24h. We found up-regulated and down-regulated genes in response to Wnt3a treatment. They are involved in the Wnt pathway itself, and also in TGF, p53 and Hedgehog pathways. Thorough characterization of these novel potential Wnt target genes may reveal new regulators of the canonical Wnt pathway. The comparison of our list of Wnt target genes with those published in other cellular contexts confirms the notion that Wnt target genes are tissue-, cell line- and treatment-specific.

Publication Title

Transcriptome analysis of Wnt3a-treated triple-negative breast cancer cells.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE55079
Nkx6.1 -cell expansion pathway
  • organism-icon Rattus norvegicus
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Nkx6.1 regulates islet β-cell proliferation via Nr4a1 and Nr4a3 nuclear receptors.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment

View Samples
accession-icon GSE55078
Nr4a1 and Nr4a3 upregulate cell cycle genes upregulated in the Nkx6.1 -cell proliferation pathway
  • organism-icon Rattus norvegicus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Loss of functional -cell mass is a hallmark of Type 1 and Type 2 diabetes, and methods for restoring these cells are needed. Nkx6.1 induces -cell proliferation, but the pathway by which Nkx6.1 activates -cell expansion has not been defined. Here we demonstrate that Nkx6.1 induces expression of the Nr4a1 and Nr4a3 orphan nuclear receptors, and that these factors are both necessary and sufficient for Nkx6.1-mediated -cell proliferation. Overexpression of the Nr4a receptors results in increased expression of key cell cycle inducers E2F1 and cyclin E1. Furthermore, Nr4a receptors induce components of the anaphase-promoting complex, including Ube2c.

Publication Title

Nkx6.1 regulates islet β-cell proliferation via Nr4a1 and Nr4a3 nuclear receptors.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment

View Samples
accession-icon GSE55077
Nkx6.1 regulates islet -cell proliferation via Nr4a1 and Nr4a3 nuclear receptors
  • organism-icon Rattus norvegicus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Loss of functional -cell mass is a hallmark of Type 1 and Type 2 diabetes, and methods for restoring these cells are needed. We have previously reported that overexpression of the homeodomain transcription factor Nkx6.1 in rat pancreatic islets induces -cell proliferation and enhances glucose-stimulated insulin secretion, but the pathway by which Nkx6.1 activates -cell expansion has not been defined. Here we demonstrate that Nkx6.1 induces expression of the Nr4a1 and Nr4a3 orphan nuclear receptors, and that these factors are both necessary and sufficient for Nkx6.1-mediated -cell proliferation. Consistent with this finding, global knockout of Nr4a1 results in a decrease in -cell area in neonatal and young mice. Overexpression of Nkx6.1 and the Nr4a receptors results in increased expression of key cell cycle inducers E2F1 and cyclin E1. Furthermore, Nkx6.1 and Nr4a receptors induce components of the anaphase-promoting complex, including Ube2c, resulting in degradation of the cell cycle inhibitor p21CIP1. These studies identify a new bipartite pathway for activation of -cell proliferation, suggesting several new targets for expansion of functional -cell mass.

Publication Title

Nkx6.1 regulates islet β-cell proliferation via Nr4a1 and Nr4a3 nuclear receptors.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment

View Samples
accession-icon GSE109004
Transcriptome analysis of LRP5- and LRP6-depleted HCC38 cells.
  • organism-icon Homo sapiens
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.1 ST Array (hugene21st)

Description

In order to characterize the differences between the co-receptors LRP5 and LRP6, we have analyzed the transcriptome of HCC38 cells - a triple negative breast cancer cell line - 24, 48 and 72 hours following the depletion of LRP5 or LRP6 using siRNAs.

Publication Title

LRP5 regulates the expression of STK40, a new potential target in triple-negative breast cancers.

Sample Metadata Fields

Disease, Disease stage, Cell line, Time

View Samples
accession-icon GSE78033
Expression Data from Uveal Melanoma patient-derived xenograft and tumor of origin
  • organism-icon Homo sapiens
  • sample-icon 45 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [CDF: Brainarray Version 13.0 (huex10st)

Description

We compare the genetic profiles of the primary tumors of uveal melanoma or metastasis to their corresponding xenografts that have been passaged over time.

Publication Title

Patient-derived xenografts recapitulate molecular features of human uveal melanomas.

Sample Metadata Fields

Disease

View Samples
accession-icon SRP153923
Chromatin-associated factors Dppa2 and Dppa4 guide epigenetic remodeling during reprogramming to pluripotency (RNA-seq)
  • organism-icon Mus musculus
  • sample-icon 32 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

As somatic cells are converted to iPSCs, their chromatin undergoes wide-ranging rearrangements that affect the ratio of euchromatin-to-heterochromatin, DNA methylation patterns and the regulation of enhancers and promoters. The molecular machinery underlying this process remains largely unknown. Here, we show that Dppa2 and Dppa4, two thus far poorly characterized mES-specific factors, play a key role in resetting the epigenome to a pluripotent configuration. They function as a heterodimer, are induced in late reprogramming intermediates, and are required for reprogramming. When overexpressed with OSKM factors, Dppa2/4 yield reprogramming efficiencies exceeding 75% of the starting culture and accelerate reprogramming kinetics, generating iPSCs in as little as 4 days. When chromatinbound, Dppa2/4 initiate global chromatin decompaction via the DNA damage response pathway, which subsequently activates mES promoters and enhancers and enables an efficient progression to pluripotency. Our work provides critical insights into how the epigenome is remodeled during cell fate transitions. Overall design: Transcriptional regulation by the Dppa2 and Dppa4 investigated by ChIP-Seq and RNA-Seq

Publication Title

Dppa2/4 Facilitate Epigenetic Remodeling during Reprogramming to Pluripotency.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact