Muscle biopsies taken from vastus lateralis muscle of 15 men and 15 women after 3 days of standardized diet and activity to examine effects of sex and age
Sex-related differences in gene expression in human skeletal muscle.
No sample metadata fields
View SamplesRNA from vastus lateralis of healthy young (21-31 year old) and older (62-77 year old) men. Signal data normalized to mean intensity of 500 over all probes sets. Analysis done with Affymetrix Microarray Suite 5.0 software.
Computational method for reducing variance with Affymetrix microarrays.
No sample metadata fields
View SamplesTo compare the transcriptome profiles of the two principal histological variants of malignant germ cell tumor that occur in childhood
Pediatric malignant germ cell tumors show characteristic transcriptome profiles.
No sample metadata fields
View SamplesPolycomb Repressive Complex 2 (PRC2) catalyzes histone H3 lysine 27 tri-methylation, an epigenetic modification associated with gene repression. H3K27me3 is enriched at the promoters of a large cohort of developmental genes in embryonic stem cells (ESCs). Loss of H3K27me3 leads to a failure of ESCs to properly differentiate, which presents a major roadblock for dissecting the precise roles of PRC2 activity during lineage commitment. While recent studies suggest that loss of H3K27me3 leads to changes in DNA methylation in ESCs, how these two pathways coordinate to regulate gene expression programs during lineage commitment is poorly understood. Here, we analyzed gene expression and DNA methylation levels in several PRC2 mutant ESC lines that maintain varying levels of H3K27me3. We found that maintenance of intermediate levels of H3K27me3 allowed for proper temporal activation of lineage genes during directed differentiation of ESCs to spinal motor neurons (SMNs). However, genes that function to specify other lineages failed to be repressed, suggesting that PRC2 activity is necessary for lineage fidelity. We also found that H3K27me3 is antagonistic to DNA methylation in cis. Furthermore, loss of H3K27me3 leads to a gain in promoter DNA methylation in developmental genes in ESCs and in lineage genes during differentiation. Thus, our data suggest a role for PRC2 in coordinating dynamic gene repression while protecting against inappropriate promoter DNA methylation during differentiation. Overall design: Embryonic Stem Cell (ESC) lines mutant for PRC2 core components Suz12 (Suz12GT and Suz12delta) and Eed (Eednull) were subjected to in vitro directed differentiation down the spinal motor neuron lineage. ESCs and day 5 differentiated cells from the three mutant lines and wild-type were used for RNA-seq.
Polycomb Repressive Complex 2 regulates lineage fidelity during embryonic stem cell differentiation.
No sample metadata fields
View SamplesMuscle biopsies taken from vastus lateralis muscle of 30 normal subjects and 19 FSHD subjects (see PubMed ID 17151338)
Expression profile of FSHD supports a link between retinal vasculopathy and muscular dystrophy.
No sample metadata fields
View SamplesPurpose: This study aimed to identify differentially expressed genes and transcripts in zebrafish embryos and larvae following benzo[a]pyrene (BaP) exposure. Methods: Adult zebrafish (2 males × 4 females, N=6 replicate tanks for each treatment) were acclimated for 7 days in an 818 Low Temp Illuminated Incubator (Precision Scientific, Chennai, India) at 28.5°C. Next, adult fish were waterborne exposed to control or 50 µg/L (ppb) BaP for 7 days; ethanol was used as vehicle solvent, and final ethanol concentration was 0.1 mL/L (100 ppm) in all treatment groups. This dose of ethanol is not teratogenic to zebrafish. Water was changed and/or re-dosed daily. From day 7 to 11 of the parental exposure, eggs were collected, counted, and raised in normal conditions (control) or continuously exposed to 50 µg/L BaP until 3.3 and 96 hours post fertilization (hpf). At 3.3 or 96 hpf, embryos (200/pool) or larvae (10/pool) were collected and pooled. Total RNA was isolated for transcriptomic RNA sequencing with Illumina HiSeq2000 (2X100bp). RNA-seq reads were uploaded to the galaxy platform https://main.g2.bx.psu.edu/. RNA-seq reads were trimmed, filtered, and aligned to the zebrafish genome (Danio_rerio.Zv9.68) with the Tophat for Illumina tool. Counting and annotation of RNA-seq reads were performed with Partek Genomics Suite version 6.11. Refseq Transcripts (2013-04-10) and Ensembl Transcripts release 70 databases were used for gene and transcript annotation. Differential expression of gene and transcript reads between treatments was analyzed with R package EdgeR. Genes/transcripts with false discovery rate (FDR) less than 0.05 and absolute fold change greater than 1.5 were considered as significant. Differentially expressed genes were defined as genes with altered expression at either gene or transcript level. Results: Differential expression analysis with EdgeR revealed that gene expression was vastly different between 3.3 hpf zebrafish embryos and 96 hpf larvae. Using Refseq annotation, we found that 10644 out of 13950 transcribed zebrafish genes were differentially expressed between the two developmental time-points, with 5961 up-regulated genes and 4683 down-regulated genes in 96 hpf larvae compared with 3.3 hpf embryos. Similarly, using Ensembl annotation, 16529 out of 19886 transcribed zebrafish genes were differentially expressed, with 9318 up-regulated genes and 7211 down-regulated genes in 96 hpf larvae compared with 3.3 hpf embryos. In 3.3 hpf embryos, four genes and seven transcripts were differentially expressed after BaP exposure. In 96 hpf larvae, 447 and 484 zebrafish genes were significantly up- and down-regulated, respectively, by BaP exposure. Conclusions: Parental and developmental BaP exposure caused gene expression changes in zebrafish embryos and larvae. Overall design: Illumina HiSeq2000 deep sequencing was used to generate transcriptomic profiles for BaP-exposed 3.3 hpf zebrafish embryos (n=3 for control, n=3 for BaP) and 96 hpf larvae (n=2 for control, n=2 for BaP).
Transcriptomic Changes in Zebrafish Embryos and Larvae Following Benzo[a]pyrene Exposure.
No sample metadata fields
View SamplesThe transcription factor Helios is expressed in a large subset of Foxp3+ Tregs of both mouse and man. We previously demonstrated that Treg induced in peripheral sites (pTreg) from Foxp3- T conventional (Tconv) cells were Helios- and proposed that Helios is a marker of thymic derived Treg (tTreg). To compare the two Treg subpopulations, we generated Helios-GFP reporter mice and crossed them to Foxp3-RFP reporter mice. The Helios+ Treg population expressed a more activated phenotype and had a higher suppressive capacity in vitro. Both populations expressed a highly demethylated TSDR and both subsets were equivalent in their ability to suppress inflammatory bowel disease in vivo. However, Helios+ Treg more effectively inhibited the proliferation of activated, autoreactive splenocytes from scurfy mice. When Helios+ and Helios- Treg were transferred to lymphoreplete mice, both populations maintained comparable Foxp3 expression, but Foxp3 expression was less stable in Helios- Treg when transferred to lymphopenic mice. Gene expression profiling of the two populations demonstrated a large number of differentially expressed genes and that Helios- Treg subpopulation expressed certain genes normally expressed in CD4+Foxp3- T cells. TCR repertoire analysis indicated very little overlap between Helios+ and Helios- Treg. Thus, Helios+ and Helios- Treg subpopulations are phenotypically and functionally distinct, consistent with thymic and peripheral sites of origin, respectively. Because of their superior suppressive activity and enhanced stability Foxp3+Helios+ Treg represent the optimal Treg population for cellular immunotherapy. Overall design: 5 replicates of wildtype vs knockout Helios gene in Treg cells.
Helios<sup>+</sup> and Helios<sup>-</sup> Treg subpopulations are phenotypically and functionally distinct and express dissimilar TCR repertoires.
Specimen part, Subject
View SamplesThe putative trancriptional regulator PA2449 was found to be essential for both glycine/serine metabolism and the production of phenazines in P. aeruignosa PAO1.
Gene PA2449 is essential for glycine metabolism and pyocyanin biosynthesis in Pseudomonas aeruginosa PAO1.
No sample metadata fields
View SamplesMyotonic dystrophy type 1 (DM1) is an RNA dominant disease in which mutant transcripts containing an expanded CUG repeat (CUGexp) cause muscle dysfunction by interfering with biogenesis of other mRNAs. The toxic effects of mutant RNA are mediated partly through sequestration of splicing regulator Muscleblind-like 1 (Mbnl1), a protein that binds to CUGexp RNA. A gene that is prominently affected encodes chloride channel 1 (Clcn1), resulting in hyperexcitability of muscle (myotonia). To identify DM1-affected genes and study mechanisms for dysregulation, we performed global mRNA profiling in transgenic mice that express CUGexp RNA, as compared to Mbnl1 knockout and Clcn1 null mice. We found that the majority of changes induced by CUGexp RNA in skeletal muscle can be explained by reduced activity of Mbnl1, including many changes that are secondary to myotonia. The pathway most affected comprises genes involved in calcium signaling and homeostasis. Some effects of CUGexp RNA on gene expression are caused by abnormal alternative splicing or downregulation of Mbnl1-interacting mRNAs. However, several of the most highly dysregulated genes showed altered transcription, as indicated by parallel changes of the corresponding premRNAs. These results support the idea that trans-dominant effects of CUGexp RNA on gene expression in this transgenic model may occur at the level of transcription, RNA processing, and mRNA decay, and are mediated mainly but not entirely through sequestration of Mbnl1.
Transcriptional and post-transcriptional impact of toxic RNA in myotonic dystrophy.
Sex, Age
View SamplesSystemic juvenile idiopathic arthritis (SJIA) is a chronic childhood arthropathy with features of autoinflammation. Early inflammatory SJIA is associated with expansion and activation of neutrophils with a sepsis-like phenotype, but neutrophil phenotypes present in longstanding and clinically inactive disease (CID) are unknown. The objective of this study was to examine activated neutrophil subsets, S100 alarmin release, and gene expression signatures in children with a spectrum of SJIA disease activity. Methods: Highly-purified neutrophils were isolated using a two-step procedure of density-gradient centrifugation followed by magnetic-bead based negative selection prior to flow cytometry or cell culture to quantify S100 protein release. Whole transcriptome gene expression profiles were compared in neutrophils from children with both active SJIA and CID. Results: Patients with SJIA and active systemic features demonstrated a higher number of CD16+CD62Llo neutrophil population compared to controls. This neutrophil subset was not seen in patients with CID or patients with active arthritis not exhibiting systemic features. Using imaging flow cytometry, CD16+CD62Llo neutrophils from patients with active SJIA and features of macrophage activation syndrome (MAS) had increased nuclear hypersegmentation compared to CD16+CD62L+ neutrophils. Serum levels of S100A8/A9 and S100A12 were strongly correlated with peripheral blood neutrophil counts. Neutrophils from active SJIA patients did not show enhanced resting S100 protein release; however, regardless of disease activity, neutrophils from SJIA patients did show enhanced S100A8/A9 release upon PMA stimulation compared to control neutrophils. Furthermore, whole transcriptome analysis of highly purified neutrophils from children with active SJIA identified 214 differentially expressed genes compared to neutrophils from healthy controls. The most significantly upregulated gene pathway was Immune System Process, including AIM2, IL18RAP, and NLRC4. Interestingly, this gene set showed intermediate levels of expression in neutrophils from patients with long-standing CID yet persistent serum IL-18 elevation. Indeed, all patient samples regardless of disease activity demonstrated elevated inflammatory gene expression, including inflammasome components and S100A8. Conclusion: We identify features of neutrophil activation in SJIA patients with active disease and CID, including a proinflammatory gene expression signature, reflecting persistent innate immune activation. Taken together, these studies expand understanding of neutrophil function in chronic autoinflammatory disorders such as SJIA. Overall design: Highly purified neutrophils isolated from patients with SJIA and healthy controls
Neutrophils From Children With Systemic Juvenile Idiopathic Arthritis Exhibit Persistent Proinflammatory Activation Despite Long-Standing Clinically Inactive Disease.
Specimen part, Disease, Disease stage, Subject
View Samples