The liver circadian clock is reprogrammed by nutritional challenge through the rewiring of specific transcriptional pathways. As the gut microbiota is tightly connected to host metabolism, whose coordination is governed by the circadian clock, we explored whether gut microbes influence circadian homeostasis and how they distally control the peripheral clock in the liver. Using fecal transplant procedures we reveal that, in response to high fat diet, the gut microbiota drives PPAR-mediated activation of newly oscillatory transcriptional programs in the liver. Moreover, antibiotics treatment prevents PPAR-driven transcription in the liver, underscoring the essential role of gut microbes in clock reprogramming and hepatic circadian homeostasis. Thus, a specific molecular signature characterizes the influence of the gut microbiome in the liver, leading to the transcriptional rewiring of hepatic metabolism.
Gut microbiota directs PPARγ-driven reprogramming of the liver circadian clock by nutritional challenge.
Specimen part
View SamplesThe circadian clock orchestrates rhythms in physiology and behavior, allowing the organism to adapt to daily environmental changes. Recently, efforts have been made to unravel the connection between the circadian clock and metabolism and to understand how the peripheral clock in different organs coordinates circadian responses to maintain metabolic homeostasis. It is becoming clear that diet can influence diurnal rhythms, however, the molecular mechanisms responsible for alterations in daily oscillations and how tissue-specific clocks interpret a nutritional challenge are not well understood. Here, we reveal tissue-specific circadian plasticity in response to a ketogenic diet (KD) in both the liver and intestine and a remarkable deviation within these two tissues following subsequent carbohydrate supplementation. KD caused a dramatic change in the circadian transcriptome in both liver and intestine in a tissue-specific fashion. In particular, both the amplitude of clock genes as well as specific BMAL1 recruitment was profoundly altered by KD while the intestinal clock was devoid of such plasticity. While PPARG nuclear accumulation was circadian in both tissues, it showed substantial phase specificity as did downstream targets. Finally, the gut and liver clocks had distinct responses to carbohydrate supplementation to KD composition, suggesting a higher plasticity in the ileum whose gene expression was almost restored to control baseline. For the first time our results demonstrate how nutrients modulate clock function in a tissue-specific manner, suggesting that a food stress arouses unique circadian molecular signatures in distinct peripheral tissues.
Distinct Circadian Signatures in Liver and Gut Clocks Revealed by Ketogenic Diet.
Specimen part
View SamplesReactive oxygen species (ROS) are key signalling molecules that regulate growth and development and coordinate responses to biotic and abiotic stresses. ROS homeostasis is controlled through a complex network of ROS production and scavenging enzymes. Recently, the first genes involved in ROS perception and signal transduction have been identified and, currently, we are facing the challenge to uncover the other players within the ROS regulatory gene network. The specificity of ensuing cellular responses depends on the type of ROS and their subcellular production sites. Various experimental systems, including catalase-deficient plants, in combination with genome-wide expression studies demonstrated that increased hydrogen peroxide (H2O2) levels significantly affect the transcriptome of plants and are capable of launching both defence responses and cell death events.
Spatial H2O2 signaling specificity: H2O2 from chloroplasts and peroxisomes modulates the plant transcriptome differentially.
Age, Specimen part
View SamplesTranscript profiling of transgenic Arabidopsis thaliana seedlings constitutively overexpressing UGT74E2 (35S::UGT74E2).
Perturbation of indole-3-butyric acid homeostasis by the UDP-glucosyltransferase UGT74E2 modulates Arabidopsis architecture and water stress tolerance.
Specimen part
View SamplesThe goal of this study was to compare the transcriptional profile (RNA-seq) of imbibed Arabidopsis thaliana Columbia-0 ecotype seeds that were treated with a 20 min red or far red pulse. The red-light pulse induces germination. Overall design: Col-0 seeds were sown in clear plastic boxes, each containing 10 mL of 0.8 % (w/v) agar in demineralized water. To establish a minimum and equal photo-equilibrium, seeds were imbibed for 2 hours in darkness and then irradiated for 20 min with a saturated far-red pulse (FRp, calculated Pfr/P= 0.03, 42 µmol.m-2.s-1) in order to minimize the quantities of Pfr formed during their development in the mother plant. Seeds were then stratified at 5 °C in darkness for 3 days, prior to the 20 minutes with a saturated red pulse (Rp, calculated Pfr/P= 0.87, 0.05 µmol.m-2.s-1) or FRp. Three biological replicates of each condition were collected 12 hours after the corresponding R and FR light pulses.
Alternative Splicing Regulation During Light-Induced Germination of <i>Arabidopsis thaliana</i> Seeds.
Subject
View SamplesYB-1 controls epithelial-mesenchymal transitions by restricting translation of growth-related mRNAs and enabling expression of EMT-inducing transcription factors. We used microarrays to characterize the direct transcriptional and indirect translational regulation of mRNAs by exogenous YB-1 in breast cancer cell lines.
Translational activation of snail1 and other developmentally regulated transcription factors by YB-1 promotes an epithelial-mesenchymal transition.
No sample metadata fields
View SamplesThe goal of this study is to identify downstream pathways, diagnostic markers, and potential therapeutic targets for IFS/CMN.
Mediators of receptor tyrosine kinase activation in infantile fibrosarcoma: a Children's Oncology Group study.
Specimen part
View SamplesWe report a mouse model that recapitulates expression of the ETV6-NTRK3 (EN) fusion oncoprotein, the product of the t(12;15)(p13;q25) translocation characteristic of human secretory breast carcinoma. Activation of EN expression in mammary tissues by Whey acidic protein (Wap) promoter-driven Cre leads to fully penetrant, multifocal malignant breast cancer with short latency. We provide genetic evidence that committed bipotent or CD61+ luminal alveolar progenitors, are targets of tumorigenesis. Furthermore, EN transforms these otherwise transient progenitors through activation of the AP1 complex. Given increasing relevance of chromosomal translocations in epithelial cancers, such mice serve as a paradigm for the study of their genetic pathogenesis and cellular origins, and generation of novel preclinical models.
ETV6-NTRK3 fusion oncogene initiates breast cancer from committed mammary progenitors via activation of AP1 complex.
No sample metadata fields
View SamplesWe report a mouse model that recapitulates expression of the ETV6-NTRK3 (EN) fusion oncoprotein, the product of the t(12;15)(p13;q25) translocation characteristic of human secretory breast carcinoma. Activation of EN expression in mammary tissues by Whey acidic protein (Wap) promoter-driven Cre leads to fully penetrant, multifocal malignant breast cancer with short latency. We provide genetic evidence that committed bipotent or CD61+ luminal alveolar progenitors, are targets of tumorigenesis. Furthermore, EN transforms these otherwise transient progenitors through activation of the AP1 complex.
ETV6-NTRK3 fusion oncogene initiates breast cancer from committed mammary progenitors via activation of AP1 complex.
No sample metadata fields
View SamplesWe report a mouse model that recapitulates expression of the ETV6-NTRK3 (EN) fusion oncoprotein, the product of the t(12;15)(p13;q25) translocation characteristic of human secretory breast carcinoma. Activation of EN expression in mammary tissues by Whey acidic protein (Wap) promoter-driven Cre leads to fully penetrant, multifocal malignant breast cancer with short latency. We provide genetic evidence that committed bipotent or CD61+ luminal alveolar progenitors, are targets of tumorigenesis. Furthermore, EN transforms these otherwise transient progenitors through activation of the AP1 complex. Given increasing relevance of chromosomal translocations in epithelial cancers, such mice serve as a paradigm for the study of their genetic pathogenesis and cellular origins, and generation of novel preclinical models.
ETV6-NTRK3 fusion oncogene initiates breast cancer from committed mammary progenitors via activation of AP1 complex.
No sample metadata fields
View Samples