refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 39 results
Sort by

Filters

Technology

Platform

accession-icon GSE98147
Global gene expression profiling of SM and the derivatives (DM, D, MYO, SCL, SYN) induced from hiPSCs
  • organism-icon Homo sapiens
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Global gene expression profiling of human iPSC and the iPSC-derived presomitic mesoderm(PSM), somite(SM), and the derivatives, dermomyotome(DM), dermatome(D), myotome(MYO), sclerotome(SCL) and syndetome(SYN).

Publication Title

Modeling human somite development and fibrodysplasia ossificans progressiva with induced pluripotent stem cells.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE62783
Global gene expression profiling of FOP- or resFOP-iMSCs treated by several ligands
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Analyzed differentially expressed genes among FOP- or resFOP-iMSCs treated by several ligands:

Publication Title

Neofunction of ACVR1 in fibrodysplasia ossificans progressiva.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE108771
Global gene expression profiling of FOP-iMSCs after chondrogenic differentiation with ERBB2 inhibitors
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Global gene expression profiling of FOP-iMSCs after chondrogenic differentiation with ERBB2 inhibitors

Publication Title

An mTOR Signaling Modulator Suppressed Heterotopic Ossification of Fibrodysplasia Ossificans Progressiva.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE69459
Global gene expression profiling of FOP- or resFOP-iMSCs after chondrogenic differentiation
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Comparison of gene expressions among FOP- or resFOP-iMSCs after chondrogenic differentiation with or without Activin-A.

Publication Title

Neofunction of ACVR1 in fibrodysplasia ossificans progressiva.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE90638
Global gene expression profiling of FOP- or resFOP-iMSCs after chondrogenic differentiation
  • organism-icon Homo sapiens
  • sample-icon 34 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Comparison of gene expressions among FOP- or resFOP-iMSCs after chondrogenic differentiation with Activin-A, BMP-7 or TGF-B3

Publication Title

Activin-A enhances mTOR signaling to promote aberrant chondrogenesis in fibrodysplasia ossificans progressiva.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE117139
Expression data from human CD4 T cells differentiated under inflammatory conditions
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To identify transcriptio factors responsible for CXCL13 production by human CD4+ T cells, we differentiated CXCL13-producing CD4+ T cells in vitro under TGF--positive inflammatory conditions and conducted transcriptome analysis.

Publication Title

Human Sox4 facilitates the development of CXCL13-producing helper T cells in inflammatory environments.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE20196
Gene expression profile of poorly differentiated synovial sarcoma
  • organism-icon Homo sapiens
  • sample-icon 34 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Poorly differentiated type synovial sarcoma (PDSS) is a variant of synovial sarcoma characterized by predominantly round or short-spindled cells. Although accumulating evidence from clinicopathological studies suggests a strong association between this variant of synovial sarcoma and poor prognosis, little has been reported on the molecular basis of PDSS. To gain insight into the mechanism(s) that underlie the emergence of PDSS, we analyzed the gene expression profiles of 34 synovial sarcoma clinical samples, including 5 cases of PDSS, using an oligonucleotide microarray. In an unsupervised analysis, the 34 samples fell into 3 groups that correlated highly with histological subtype, namely, monophasic, biphasic, and poorly differentiated types. PDSS was characterized by down-regulation of genes associated with neuronal and skeletal development and cell adhesion, and up-regulation of genes on a specific chromosomal locus, 8q21.11. This locus-specific transcriptional activation in PDSS was confirmed by reverse transcriptase (RT)-PCR analysis of 9 additional synovial sarcoma samples. Our results indicate that PDSS tumors constitute a distinct genetic group based on expression profiles.

Publication Title

Gene expression profiling of synovial sarcoma: distinct signature of poorly differentiated type.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE63895
A stage-specific induction system reveals that the oncogenic fusion protein in synovial sarcoma, SS18-SSX, is a cellular context-dependent epigenetic modifier
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

We analyzed the effects of cellular context on the function of the synovial sarcoma-specific fusion protein, SS18-SSX, using human pluripotent stem cells containing the drug-inducible SS18-SSX gene. To investigate the cell-type-dependent effecfts of SS18-SSX, we performed gene expression profiling experiments.

Publication Title

SS18-SSX, the Oncogenic Fusion Protein in Synovial Sarcoma, Is a Cellular Context-Dependent Epigenetic Modifier.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE41123
EWS/ATF1 activates Fos and induces soft tissue sarcomas from neural crest-derived cells.
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

EWS/ATF1 expression induces sarcomas from neural crest-derived cells in mice.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE41121
EWS/ATF1 activates Fos and induces soft tissue sarcomas [Affymetrix].
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Clear cell sarcoma (CCS) is an aggressive soft tissue malignant tumor characterized by a unique t(12; 22) translocation, leading to the expression of a chimeric EWS/ATF1 fusion gene. However, little is known about the mechanisms underlying how EWS/ATF1 is involved in the development of CCSs. In addition, the cells of origin for CCSs remain to be determined. We generated EWS/ATF1-inducible mice, and examined the effects of EWS/ATF1 expression in adult cells. We show that the forced expression of EWS/ATF1 results in the development of EWS/ATF1-dependent sarcomas in mice. The histology of EWS/ATF1-induced sarcomas resembles that of CCSs and EWS/ATF1-induced tumor cells express CCS-markers, such as S100, Sox10, and Mitf. A lineage tracing experiment revealed that such sarcomas are derived from neural crest-lineage cells. Finally, we found that EWS/ATF1 directly induces Fos in an ERK-independent manner, and demonstrated that the increased Fos expression is important for the active cell proliferation in not only EWS/ATF1-induced sarcomas, but also in human CCSs. Our results indicate that FOS, as well as EWS/ATF1 itself, could be a promising therapeutic target for the treatment of EWS/ATF1-related sarcomas.

Publication Title

EWS/ATF1 expression induces sarcomas from neural crest-derived cells in mice.

Sample Metadata Fields

Specimen part

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact