Nitrogen (N) and nitrate (NO3-) per se regulate many aspects of plant metabolism, growth and development. N/NO3- also suppresses parts of secondary metabolism including anthocyanin synthesis. Molecular components for this repression are unknown. We report that three N/NO3--induced members of the LATERAL ORGAN BOUNDARY DOMAIN (LBD) gene family of transcription factors (LBD37, LBD38 and LBD39) act as negative regulators of anthocyanin biosynthesis in Arabidopsis (Arabidopsis thaliana). Over-expression of each of the three genes in the absence of N/NO3- strongly suppresses the key regulators of anthocyanin synthesis PAP1 and PAP2, genes in the anthocyanin-specific part of flavonoid synthesis, as well as cyanidin- but not quercetin- or kaempferol-glycoside production. Conversely, lbd37, lbd38 or lbd39 T-DNA insertion mutants accumulate anthocyanins when grown in N/NO3--sufficient conditions and show constitutive expression of anthocyanin biosynthetic genes. The LBD genes also repress many other known N-responsive genes including key genes required for NO3- uptake and assimilation, resulting in altered NO3- content, nitrate reductase activity/activation, protein, amino acid and starch levels, and N-related growth phenotypes. The results identify LBD37 and its two close homologs as novel repressers of anthocyanin biosynthesis and N-availability signals in general. They also show that besides being developmental regulators LBD genes fulfill roles in metabolic regulation.
Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis.
Age, Specimen part, Treatment
View SamplesSTO2 is a novel MYB like protein which belongs to one of the most important transcription factors in planta.
Salt-Related MYB1 Coordinates Abscisic Acid Biosynthesis and Signaling during Salt Stress in Arabidopsis.
Specimen part
View SamplesThis work purposed on screening candidates of key genes invovled in the production of phenylacylated flavonol-glycosides
Characterization of a recently evolved flavonol-phenylacyltransferase gene provides signatures of natural light selection in Brassicaceae.
No sample metadata fields
View SamplesTranscriptoTranscriptome profiling using DNA microarrays of the aerial parts of the wild-type and other plants was conducted to examine if either MYB overexpression or flavonoid overaccumulation is responsible for the expression of stress-related genes involved in both the biotic and abiotic stress response.
Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids.
Specimen part
View SamplesComparing the gene expression patterns between wild type plant (Col-0) and MYB Over-expression plants.
Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis.
No sample metadata fields
View SamplesAbstract: Drought is the primary cause of global agricultural losses and represents a major threat to worldwide food security. Currently, plant biotechnology stands out as the most promising strategy to increase crop growth in rain-fed conditions. The main mechanisms underlying drought resistance have been uncovered by studies of plant physiology and by engineering crops with drought-resistant genes. However, plants with enhanced drought resistance usually display lower levels of growth, highlighting the need to search for novel strategies capable of uncoupling drought resistance from growth. Here, we show that the brassinosteroid family of receptors, in addition to promoting growth, guides phenotypic adaptation to a great variety of drought stress traits analyzed herein. Whilst mutations in the ubiquitously localized BRI1 receptor pathway show an enhanced drought resistance at the expense of plant growth, we found that vascular-enriched BRL3 receptors confer drought tolerance without penalizing overall growth. Systematic analyses reveal that upon drought stress the BRL3 receptor pathway triggers the synthesis and mobilization of osmoprotectant metabolites, mainly proline and sugars. This preferentially occurs in the vascular tissues of the roots and favors overall plant growth. Altogether, our results uncover a new role for the spatial control of BR signaling in drought tolerance, and offer a novel strategy to address food security issues in an increasingly water-limited climate. Overall design: 28 days old root system were collected from soil, quickly washed in water and flash-frozen. Experiment with a bifactorial design. Factor one is the genotype, which include WT (Col-0) and 35S:BRL3. Factor two is the condition, which include control (Properly watered) and 5 days of drought (water-hold) conditions. 3 Biological replicates were collected per each genotype and condition.
Overexpression of the vascular brassinosteroid receptor BRL3 confers drought resistance without penalizing plant growth.
Specimen part, Subject
View SamplesSulfur-deficiency-induced repressor proteins optimize glucosinolate biosynthesis in plants
Sulfur deficiency-induced repressor proteins optimize glucosinolate biosynthesis in plants.
Specimen part
View SamplesWe performed RNAseq on subpopulations of mammary epithelial cells. We carried out sorting of a gradient of s-SHIP positive cells in the mammary gland (neg, low, and hi for s-SHIP eGFP). High sSHIP-eGFP populations denote a postulated stem cell population, while low and negative represent more differentiated cell types. s-SHIP eGFP hi to negative potentially represents a gradient from stem to more differentiated progeny, respectively, within the basal epithelial compartment. We FACS sorted 3 replicates for each cell type to represent s-SHIP-neg, s-SHIP-low, and s-SHIP-high. Overall design: We FACS sorted 3 replicates for each cell type to represent s-SHIP-neg, s-SHIP-low, and s-SHIP-high, profiling each of these groups using RNA sequencing.
WNT-Mediated Regulation of FOXO1 Constitutes a Critical Axis Maintaining Pubertal Mammary Stem Cell Homeostasis.
Cell line, Subject
View SamplesRecently, we identified mesenchymoangioblast (MAB), as a clonal mesodermal precursor for mesenchymal and endothelial cells. Here we show, that MABs have the capacity to produce mesenchymal progenitors, which can be differentiated into pericytes or smooth muscles cells under the influence of PDGF-BB or TGFß plus sphingosylphosphorylcholine (SPC), respectively. Based on these studies we established the hierarchy of vasculogenic progenitors that provides the platform for interrogation of molecular mechanisms regulating vasculogenic cell specification and diversification from primitive posterior mesoderm. Overall design: Vasculogenic cells generated under specific culture conditions. Primary cells were used as control.
Specification and Diversification of Pericytes and Smooth Muscle Cells from Mesenchymoangioblasts.
No sample metadata fields
View SamplesUsing global gene expression and proteomic analyses, we identified a molecular signature in human embryonic and induced pluripotent stem cells that suggested a central regulatory role for RNA splicing in self-renewal. Through genetic and biochemical approaches, we established reciprocal functional links between the master regulatory factor OCT4 and SFRS2, a member of the serine/arginine-rich family of splicing factors. SFRS2 regulates expression of two isoforms of the methyl-CpG-binding protein MBD2 that play opposing roles in human ESC and during the reprogramming of fibroblasts. Both the MBD2a isoform expressed in fibroblasts and the MBD2c isoform found in pluripotent cells bind OCT4 and NANOG promoters in human ESC, but only MBD2a interacts with NuRD chromatin remodeling factors. Members of the miR-301 and miR-302 families provide additional regulation by targeting SFRS2 and the somatic specific MBD2a isoform. These data are consistent with a model in which OCT4, SFRS2, and MBD2 participate in a positive feedback loop to regulate proteome diversity in support of self-renewal in pluripotent cells.
Alternative splicing of MBD2 supports self-renewal in human pluripotent stem cells.
Specimen part
View Samples