In this report, we have found that gata1 expressing erythroid cells contribute to a significant proportion of total body oxidative stress when animals were exposed to a strong pro-oxidant. RNA-seq of zebrafish under oxidative stress revealed the induction of tp53. Zebrafish carrying tp53 with mutation in its DNA binding domain were acutely sensitive to pro-oxidant exposure and displayed significant reactive oxygen species (ROS) and tp53-independent erythroid cell death resulting in an edematous phenotype. We found that a major contributing factor to ROS was increased basal mitochondrial respiratory rate without reserve. These data add to the concept that tp53, while classically a tumor suppressor and cell cycle regulator, has additional roles in controlling cellular oxidative stress. Overall design: We performed RNA-seq in two experiments. (1) Wild-type zebrafish embryos were exposed to 1-naphthol (vs no exposure) from 24 - 72 hpf (n = 5/group). (2) tp53 mutant zebrafish embryos were exposed to 1-naphthol (vs no exposure) from 24 - 72 hpf (n = 5/group).
TP53 Modulates Oxidative Stress in Gata1<sup>+</sup> Erythroid Cells.
No sample metadata fields
View SamplesMyosin IIa-deficient follicular B cells have a hyperactivated phenotype. To identify what pathways are regulated by myosin IIa, we performed RNA-seq of coding RNA on flow cytometry sorted follicular B cells from CD23Cre+Myh9fl/fl and CD23Cre+Myh9wt/fl mice. Overall design: B220+AA4.1-CD23+CD21lo follicular B cells were sorted from 3 CD23Cre+Myh9fl/fl and 3 CD23Cre+Myh9wt/fl mice and mRNA was isolated and sequenced.
Myosin IIa Promotes Antibody Responses by Regulating B Cell Activation, Acquisition of Antigen, and Proliferation.
Cell line, Subject
View SamplesSkeletal myogenic commitment of human pluripotent cells can be achieved by doxycycline-inducible expression of the transcription factor PAX7. To gain further insights on PAX7 function during this process, we performed a time course whole transcriptome analysis of differentiating H9 human embryonic stem cells from doxycycline-treated and untreated cultures. In addition, we identified the genomic binding of PAX7 in one of the selected time point (referred as PAX7+ proliferating myogenic progenitors). Overall design: Gene expression profiling was performed on biological replicates from differentiating H9 cells at the following time points: PAX7+ mesodermal cells (day 14), PAX7+ proliferating myogenic progenitors (approximately day 23), and differentiated myocytes (differentiation stage – around day 30; 7 days in the absence of PAX7 induction). Since PAX7 expression is doxycycline inducible, we also collected uninduced control samples at the same time points (termed mesodermal cells for day 14 and proliferating cells for day 23). PAX7 genomic binding was assessed in day 23 dox-treated cultures.
PAX7 Targets, CD54, Integrin α9β1, and SDC2, Allow Isolation of Human ESC/iPSC-Derived Myogenic Progenitors.
No sample metadata fields
View SamplesTechnical replicates from BC3 and BCBL1 cell lines were treated with DMSO or 5 micromoles of lenalidomide for 24 hours.
Immunomodulatory drugs target IKZF1-IRF4-MYC axis in primary effusion lymphoma in a cereblon-dependent manner and display synergistic cytotoxicity with BRD4 inhibitors.
Cell line, Treatment
View SamplesWe report here that KSHV viral infection targets the NF-kB pathway which is crucial for cell survival. KSHV protein vFLIP K13 is known to directly interact with cellular protein NEMO of the NF-kB pathway. We used gene expression array to suggets that the interaction of K13 with NEMO is important to activate NF-kB pathway.
NEMO is essential for Kaposi's sarcoma-associated herpesvirus-encoded vFLIP K13-induced gene expression and protection against death receptor-induced cell death, and its N-terminal 251 residues are sufficient for this process.
Specimen part, Cell line
View SamplesWe compare the transcriptome of two different clones of multipotent adult progenitor cells (MAPCs) using Affymetrix arrays.
Hematopoietic reconstitution by multipotent adult progenitor cells: precursors to long-term hematopoietic stem cells.
No sample metadata fields
View SamplesIt is unclear how nanosecond electrical pulses affect gene expression.
Evaluation of the Genetic Response of U937 and Jurkat Cells to 10-Nanosecond Electrical Pulses (nsEP).
Specimen part, Cell line
View SamplesIt is unclear how nanosecond electrical pulses affect gene expression.
Evaluation of the Genetic Response of U937 and Jurkat Cells to 10-Nanosecond Electrical Pulses (nsEP).
Specimen part, Cell line
View SamplesLymph node metastasis is a poor prognosis indicator in esophageal cancer. Although tumor spreading currently forms the main basis for therapy selection, the molecular mechanisms underlying the metastatic pathway remain insufficiently understood. Several studies aimed to investigate these mechanisms but focused mainly on regulatory patterns in the tumors themselves and/or the invaded lymph nodes. To date no study has yet investigated the potential changes on transcription level, which take place within the yet non-invaded niche. Here we provide a comprehensive description of these regulations in patients. In this study the transcriptomic profiles of regional lymph nodes were determined for two patient groups: patients classified as pN1 (metastasis) or pN0 (no metastasis) respectively. All investigated lymph nodes, also those from pN1 patients, were still free of metastasis. The gene expression data was obtained via microarray analysis. Top candidates were validated via PCR and immunohistochemistry. The results show that regional lymph nodes of pN1 patients differ decisively from those of pN0 patients even before metastasis has taken place. In the pN0 group distinct immune response patterns were observed. In contrast, lymph nodes of the pN1 group exhibited a clear profile of reduced immune response and reduced proliferation, but increased apoptosis, enhanced hypoplasia and morphological conversion processes. DKK1 was the most significant gene associated with the molecular mechanisms taking place in lymph nodes of patients suffering from metastasis (pN1). We assume that the two molecular profiles observed constitute two different stages of a progressive disease. Finally we suggest that DKK1 might play an important role within the mechanisms leading to lymph node metastasis.
Molecular changes in pre-metastatic lymph nodes of esophageal cancer patients.
Specimen part, Subject
View SamplesPrecise nucleosome-positioning patterns at promoters are thought to be crucial for faithful transcriptional regulation. However, the mechanisms by which these patterns are established and dynamically maintained and subsequently contribute to transcriptional control are poorly understood. The Swi/Snf (Baf) chromatin remodeling complex is a master developmental regulator and tumor suppressor that is capable of mobilizing nucleosomes in biochemical assays. Yet, its role in establishing the nucleosome landscape in vivo is unclear. Here we have inactivated Snf5 and Brg1, core subunits of the mammalian Swi/Snf complex, to evaluate their effects on chromatin structure and transcription levels genome-wide. We find that inactivation of either subunit leads to disruptions of specific nucleosome patterning combined with a loss of overall nucleosome occupancy at a large number of promoters, regardless of their association with CpG islands. These rearrangements are accompanied by gene expression changes that promote cell proliferation. Collectively, these findings define a direct relationship between chromatin-remodeling complexes, chromatin structure, and transcriptional regulation.
Swi/Snf chromatin remodeling/tumor suppressor complex establishes nucleosome occupancy at target promoters.
Specimen part
View Samples