refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 32 results
Sort by

Filters

Technology

Platform

accession-icon SRP140689
Loss of the Mia40a oxidoreductase leads to hepato-pancreatic insufficiency in the zebrafish
  • organism-icon Danio rerio
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Development and function of tissues and organs are powered by the activity of mitochondria. In humans, inherited genetic mutations that lead to progressive mitochondrial pathology often manifest during infancy and can lead to death, reflecting the indispensable nature of mitochondrial function and biogenesis. Here, we describe a zebrafish mutant for the gene mia40a, the life-essential homologue of the evolutionarily conserved Mia40 oxidoreductase which drives the biogenesis of cysteine-rich mitochondrial proteins. We report that mia40a mutant animals undergo progressive cellular respiration defects and develop enlarged mitochondria in skeletal muscles before their ultimate at the larval stage. We generated a rich transcriptomic and proteomic resource that allowed us to identify abnormalities in the development of endodermal organs, in particular the liver and pancreas. We identify the acinar cells of the exocrine pancreas to be severely affected by mutations in the MIA pathway. Our data contribute to a better understanding of the molecular, cellular and organismal effects of mitochondrial deficiency, important for the accurate diagnosis and future treatment strategies of these diseases. Overall design: Embryos obtained from an in-cross of heterozygous mia40awaw1/+ siblings were genotyped at 3 dpf. Pools of five mia40+/+ or mia40waw1/waw1 larvae, derived from the same clutch, were collected at indicated time-points for RNA extraction and transcriptomic profiling. Larvae used in 8 dpf experiments were subjected to external feeding from 5dpf before being collected for the analysis at 8dpf.

Publication Title

Loss of the Mia40a oxidoreductase leads to hepato-pancreatic insufficiency in zebrafish.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE13061
Comparative transcriptomic analysis of BA- or BL-
  • organism-icon Mus musculus
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Bifidobacteria can protect from enteropathogenic infection through production of acetate.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE12998
Comparative transcriptomic analysis of BA- or BL- associated murine colonic epithelium after O157 infection
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

A huge number of microorganisms are colonized in human gut and the balance of their composition is closely related to human health. Recently, many probiotics such as bifidobacteria or lactobacilli have been introduced in our life as effective agents. However, we have not well understood their beneficial mechanisms including host-bacterial crosstalk. Accordingly, we took advantage of the protective mechanisms of probiotics against lethal infection of enterohemorrhagic Escherichia coli O157:H7 in murine gnotobiote model system

Publication Title

Bifidobacteria can protect from enteropathogenic infection through production of acetate.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE12997
Comparative transcriptomic analysis of BA- or BL- associated murine colonic epithelium
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

A huge number of microorganisms are colonized in human gut and the balance of their composition is closely related to human health. Recently, many probiotics such as bifidobacteria or lactobacilli have been introduced in our life as effective agents. However, we have not well understood their beneficial mechanisms including host-bacterial crosstalk To analyze the differences of gene expression between BA- or BL-associated murine colonic epithelium, we performed comparative transcriptomic analysis.

Publication Title

Bifidobacteria can protect from enteropathogenic infection through production of acetate.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE39293
Gene expression profiling of cidofovir treatment and resistance inHeLa, HaCaT, and PHK cells
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Cidofovir is an acyclic nucleoside phosphonate with strong antiviral activity against a broad spectrum of DNA viruses. Although it has previously been shown that cidofovir exerts an antiproliferative effect on HPV positive cells by the induction of apoptosis, the exact mechanism of action remains to be unraveled. In order to study the activity of cidofovir against HPV, gene expression profiling was performed in cidofovir-treated and cidofovir-resistant HeLa, HaCaT, and PHK cells by means of microarrays (HG-U133 Plus 2, Affymetrix).

Publication Title

Cidofovir selectivity is based on the different response of normal and cancer cells to DNA damage.

Sample Metadata Fields

Specimen part, Disease, Cell line

View Samples
accession-icon GSE36847
Distinct perturbation of the translatome by the anti-diabetic drug metformin
  • organism-icon Homo sapiens
  • sample-icon 32 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Reduced cancer incidence has been reported among type II diabetics treated with metformin. Metformin exhibits anti-proliferative and anti-neoplastic effects associated with inhibition of mTORC1, but the mechanisms are poorly understood. We provide the first genome-wide analysis of translational targets of canonical mTOR inhibitors (rapamycin and PP242) and metformin, revealing that metformin controls gene expression at the level of mRNA translation to an extent comparable to that of canonical mTOR inhibitors. Importantly, metformin's anti-proliferative activity can be explained by selective translational suppression of mRNAs encoding cell cycle regulators via the mTORC1/4E-BP pathway. Thus, metformin selectively inhibits mRNA translation of encoded proteins that promote neoplastic proliferation, motivating further studies of this compound and related biguanides in cancer prevention and treatment.

Publication Title

Distinct perturbation of the translatome by the antidiabetic drug metformin.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE18670
Pancreatic cancer circulating tumor cells express a cell motility gene signature that predicts survival after surgery
  • organism-icon Homo sapiens
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Most cancer deaths are caused by metastases, which are the end-results of circulating tumor cells (CTC) that detach from the cancer primary and succeed to survive in distant organs. The aim of the present study was to develop a gene signature of CTC and to assess its prognostic relevance after surgery for pancreatic ductaladenocarcinoma (PDAC).

Publication Title

Pancreatic cancer circulating tumour cells express a cell motility gene signature that predicts survival after surgery.

Sample Metadata Fields

Sex, Age, Disease stage

View Samples
accession-icon GSE49655
Commensal microbe-derived butyrate epigenetically induces colonic regulatory T cells
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE41104
Gene expression of the colonic epithelial cells in CRB mice fed with HFD and LFD
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

To elucidate the mechamisms of colonic Treg cell induction by microbial metabolite(s), chroloform-resistant bacteria (CRB)-associated mice was developed and given low-fiber diet (LFD) and high-fiber diet (HFD). The colonic epithelial cells were isolated and gene expression profiles were analyzed by GeneChip.

Publication Title

Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment

View Samples
accession-icon GSE49619
Expression data from CD4+ Nave T cells under Treg-inducing condition in the presence or absence of butyrate
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Commensal bacteria shapes gut immune system. Colonization bacteria increase the frequency of regulatory T cells, however, the molecular mechanisms has not yet been unknown.

Publication Title

Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells.

Sample Metadata Fields

Specimen part

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact