Junction Adhesion Molecule-A (JAM-A) is present on leukocytes and platelets where it promotes cell adhesion and motility. We are interested in an interaction between JAM-A and tumor progression/metastases. To address this point, we mated JAM-A-/- mice and mouse mammary tumor model MMTV-PyMT mice which, which express polyoma middle T antigen under the control of mouse mammary tumor virus. MMTV-PyMT mice show 100% penetration of mammary tumor and highly metastases to lung. MMTV-PyMT mice without JAM-A show less primary tumor progression, therefore JAM-A enhance primary tumor progression. Then we are addressing the molecular mechanism of this phenomenon by in vivo. Furthermore, we would like to examine JAM-A deficient MMTV tumor signature.
Abrogation of junctional adhesion molecule-A expression induces cell apoptosis and reduces breast cancer progression.
Specimen part
View SamplesWe used a microarray to examine the global gene expression profile of MCF7 cells grown in 2D and 3D culture conditions. Our goal was to identify changes in the expression of genes that regulate iron metabolism when cellular spatial organization was altered.
Contribution of three-dimensional architecture and tumor-associated fibroblasts to hepcidin regulation in breast cancer.
Age, Specimen part, Cell line
View SamplesBackground. More than one million women in fertile age are infected with Trypanosoma cruzi worldwide. Anti-T.cruzi seropositivity in mothers has been associated with adverse pregnancy outcome but there is still a knowledge gap regarding this effect. Our aim was to compare the gene expression profile of term placental environment from T. cruzi seropositive (SP) and seronegative (SN) mothers. Methods. A RNA-Seq was performed in 9 pools of 2 different placental RNA samples each: 3 belonging to placentas from SN and 6 from SP. Each pool consisted of a binomial of a female/male newborn and a vaginal/caesarean delivery. None of the newborns resulted infected. Results. Only 42 genes showed a significant fold change between SP and SN groups. Among the down-regulated genes were KISS1 and CGB5. In the up-regulated genes group were: KIF12, HLA-G, PRG2, TAC3, FN1 and ATXN3L. To identify pathways significantly associated with maternal T. cruzi-infection, a gene-set association analysis was implemented. The placental environment transcriptomic profile of SP consisted of an enrichment in immunological genes sets (inflammatory response and lymphocytic activation were over-expressed) whereas numerous biosynthetic processes were down-regulated. Conclusions. It is worth noting that several differentially expressed genes in SP placentas code for proteins associated to preeclampsia and miscarriage. This first transcriptomics study in human term placental environment from non-infected deliveries shows a placental response that may affect the faetus while protecting it from the parasite infection; this host response could be responsible for the low rate of congenital transmission observed in human chronic Chagas disease. Background. More than one million women in fertile age are infected with Trypanosoma cruzi worldwide. Anti-T.cruzi seropositivity in mothers has been associated with adverse pregnancy outcome but there is still a knowledge gap regarding this effect. Our aim was to compare the gene expression profile of term placental environment from T. cruzi seropositive (SP) and seronegative (SN) mothers. Methods. A RNA-Seq was performed in 9 pools of 2 different placental RNA samples each: 3 belonging to placentas from SN and 6 from SP. Each pool consisted of a binomial of a female/male newborn and a vaginal/caesarean delivery. None of the newborns resulted infected. Results. Only 42 genes showed a significant fold change between SP and SN groups. Among the down-regulated genes were KISS1 and CGB5. In the up-regulated genes group were: KIF12, HLA-G, PRG2, TAC3, FN1 and ATXN3L. To identify pathways significantly associated with maternal T. cruzi-infection, a gene-set association analysis was implemented. The placental environment transcriptomic profile of SP consisted of an enrichment in immunological genes sets (inflammatory response and lymphocytic activation were over-expressed) whereas numerous biosynthetic processes were down-regulated. Conclusions. It is worth noting that several differentially expressed genes in SP placentas code for proteins associated to preeclampsia and miscarriage. This first transcriptomics study in human term placental environment from non-infected deliveries shows a placental response that may affect the faetus while protecting it from the parasite infection; this host response could be responsible for the low rate of congenital transmission observed in human chronic Chagas disease. Overall design: Serodiagnosis of pregnant women was done by means of conventional serological methods and carried out by the respective health centres based on routine assays. In maternal and umbilical cord blood samples T. cruzi presence was tested using multiplex Real Time PCR as previously described [6]. Maternal infection with other pathogens that produce congenital transmission and adverse pregnancy outcome were considered as exclusion criteria, as well as missing data or incorrect sampling. Fresh normal placentas were obtained after labour from vaginal or caesarean deliveries and placed within 24 hours at 4°C. Each placenta was dissected and the middle section [7] at 2 cm distance from the umbilical cord was isolated and placed into RNAlater solution (Applied Biosystems, Foster City, CA). Total RNA was extracted with TRIzol reagent (Invitrogen, Carlsbad, CA) and stored at -80°C until used. Transcriptomic studies. A RNA-Seq experiment was done in 9 pools of 2 different placental RNA samples each: 3 pools (C1, C2 and C3) belonging to placentas from seronegative mothers (SN) and 6 pools (TC4 to TC9) from seropositive mothers (SP). Each pool consisted of a binomial of a female/male newborn and a vaginal/caesarean delivery. The cDNA Libraries were prepared according to Illumina''s TruSeq Stranded Total RNA with Ribo-Zero Gold for Human and a Hiseq 2.500 Illumina platform with 100 bp paired-end reads was used for sequencing
Alterations in Placental Gene Expression of Pregnant Women with Chronic Chagas Disease.
Subject
View SamplesTo examine function of PKCh for atherosclerosis, we compared the gene expression profiles of control Apoe-/- and Prkch-/-Apoe-/- mice by microarray analysis.
PKCη deficiency improves lipid metabolism and atherosclerosis in apolipoprotein E-deficient mice.
Sex, Age, Specimen part, Treatment
View SamplesInsulin action in adipocytes affects whole-body insulin sensitivity. Studies of adipose-specific Glut4 knockout mice have established that adipose Glut4 contributes to the control of systemic glucose homeostasis. Presumably, this reflects a role for Glut4-mediated glucose transport in the regulation of secreted adipokines. In cultured 3T3-L1 adipocytes, Rab10 GTPase is required for insulin-stimulated translocation of Glut4 (Sano et al., 2007). The physiological importance of adipose Rab10 and the significance of its role in the control of Glut4 vesicle trafficking in vivo are unknown. Here we report that adipocytes from adipose-specific Rab10 knockout mice have a ~50% reduction in glucose uptake and Glut4 translocation to the cell surface in response to insulin, demonstrating a role for Rab10 in Glut4 trafficking. Moreover, hyperinsulinemic-euglycemic clamp shows decreased whole-body glucose uptake as well as impaired suppression of hepatic glucose production in adipose Rab10 knockout mice. Thus, fully functional Glut4 vesicle trafficking in adipocytes is critical for maintaining insulin sensitivity. Comparative transcriptome analysis of perigonadal adipose tissue demonstrates significant transcriptional similarities between adipose Rab10 knockout mice and adipose Glut4 knockout mice, consistent with the notion that the phenotypic similarities between the two models are mediated by reduced insulin-stimulated glucose transport into adipocytes. Overall design: Transcriptome sequencing of perigonadal white adipose tissue
Disruption of Adipose Rab10-Dependent Insulin Signaling Causes Hepatic Insulin Resistance.
No sample metadata fields
View SamplesMicrophthalmos is a rare congenital anomaly characterized by reduced eye size and visual deficits of variable degrees. Sporadic and hereditary microphthalmos has been associated to heterozygous mutations in genes fundamental for eye development. Yet, many cases are idiopathic or await the identification of molecular causes. Here we show that haploinsufficiency of Meis1, a transcription factor with an evolutionary conserved expression in the embryonic trunk, brain and sensory organs, including the eye, causes microphthalmic traits and visual impairment, in adult mice. In the trunk, Meis1 acts as a cofactor for genes of the Hox complex, mostly binding to Hox-Pbx target sequence on the DNA. By combining the analysis of Meis1 loss-of-function and conditional Meis1 functional rescue with ChIPseq and RNAseq approaches, we show that during the development of the optic cup, an Hox-free region, Meis1 binds instead to Hox/Pbx-independent Meis binding site, and coordinates, in a dose-dependent manner, retinal proliferation and differentiation by regulating the expression of components of the Notch signalling pathway. Meis1 also controls the activity of genes responsible for human microphthalmia and eye patterning so that in Meis1-/- embryos, the eye size is reduced and boundaries among the different eye territories are shifted or blurred. We thus propose that Meis1 is at the core of a genetic network implicated in microphthalmia, itself representing an additional candidate for syndromic cases of these ocular malformations. Overall design: Transcriptomics and Meis1 Occupancy analysis on mouse isolated optic cups and ChIP data for histone methylation marks were obtained from about 100 eyes of E10.5 CD1 embryos.
Meis1 coordinates a network of genes implicated in eye development and microphthalmia.
No sample metadata fields
View SamplescAMP receptor protein (CRP, also known as the catabolite activator protein [CAP]) is arguably the best-studied of the global transcription factors of E coli. CRP alone is responsible for regulating at least 283 operons. Upon binding cAMP, the CRP dimer binds DNA and directly interacts with RNA polymerase (RNAP). At Class II promoters, CRP binds near position -41,5 relative to the transcription start site and contacts the amino-terminal domain of the RNAP subunit (RNAP-NTD). This interaction requires AR2, a patch of primarily positively charged residues (H19, H21, E96, and K101) that interact with negatively charged residues on RNAP-NTD. Acetylome analyses consistently detect lysine 100 (K100) of CRP as acetylated. Since K100 is adjacent to the positively charged AR2, we hypothesized that the K100 positive charge may also play a role in CRP function. We further hypothesized that acetylation of K100 would neutralize this positive charge, leading to a potential regulatory mechanism
Influence of Glucose Availability and CRP Acetylation on the Genome-Wide Transcriptional Response of <i>Escherichia coli</i>: Assessment by an Optimized Factorial Microarray Analysis.
No sample metadata fields
View SamplesWe performed a microarray screening of adult rat retinas to identify genes that could show and up- or down-regulation due to exposure to light.
A component of retinal light adaptation mediated by the thyroid hormone cascade.
Specimen part, Treatment
View SamplesGprc6a|Mck-/- (Gcrp6a skeletal muscle specific knockout)(n=4) are compared to Gprc6afl/fl (WT) mice (n=4). Gprc6a is the osteocalcin receptor. Overall design: Gprc6a/Mck-/- vs Gprc6afl/fl
Osteocalcin Signaling in Myofibers Is Necessary and Sufficient for Optimum Adaptation to Exercise.
Specimen part, Subject
View SamplesWe analyzed the changes in the spinal cord transcriptome after a spinal cord contusion injury and MSC or OEC transplantation. The cells were injected immediately or 7 days after the injury. The mRNA of the spinal cord injured segment was extracted and analyzed by microarray at 2 and 7 days after cell grafting.
Gene expression changes in the injured spinal cord following transplantation of mesenchymal stem cells or olfactory ensheathing cells.
Treatment
View Samples