This SuperSeries is composed of the SubSeries listed below.
Host Transcription Profile in Nasal Epithelium and Whole Blood of Hospitalized Children Under 2 Years of Age With Respiratory Syncytial Virus Infection.
Sex, Age, Specimen part, Disease, Disease stage
View SamplesPancreatic ductal adenocarcinoma (PDAC) has a characteristically dense stroma comprised predominantly of cancer associated fibroblasts (CAFs). CAFs promote tumor growth, metastasis and treatment resistance. We aimed to investigate the molecular changes and functional consequences associated with chemotherapy treatment of PDAC CAFs.
Chemotherapy-Induced Inflammatory Gene Signature and Protumorigenic Phenotype in Pancreatic CAFs via Stress-Associated MAPK.
Specimen part
View SamplesThe canonical Wnt signaling pathway is critical for myogenesis and can induce muscle progenitors to switch from proliferation to differentiation; how Wnt signals integrate with muscle specific regulatory factors in this process is poorly understood. We previously demonstrated that the Barx2 homeobox protein promotes differentiation in cooperation with the muscle regulatory factor (MRF) MyoD. Pax7, another important muscle homeobox factor represses differentiation. We now identify Barx2,MyoD,and Pax7 as novel components of the Wnt effector complex, providing a new molecular pathway for regulation of muscle progenitor differentiation. Canonical Wnt signaling induces Barx2 expression in muscle progenitors and perturbation of Barx2 leads to misregulation of Wnt target genes. Barx2 activates two endogenous Wnt target promoters as well as the Wnt reporter gene TOPflash, the latter synergistically with MyoD. Moreover, Barx2 interacts with the core Wnt effectors ß-catenin and TCF, is recruited to TCF/LEF sites, and promotes recruitment of ß-catenin. In contrast, Pax7 represses the Wnt reporter gene and antagonizes the activating effect of Barx2. Pax7 also binds ß-catenin suggesting that Barx2 and Pax7 may compete for interaction with the core Wnt effector complex. Overall, the data show for the first time that Barx2, Pax7, and MRFs can act as direct transcriptional effectors of Wnt signals in myoblasts and that Barx2 and Wnt signaling participate in a regulatory loop. We propose that antagonism between Barx2 and Pax7 in regulation of Wnt signaling may help mediate the switch from myoblast proliferation to differentiation. Overall design: RNA-Seq analyses was used to characterize gene expression in primary myoblasts from wild-type and Barx2 knockout mice.
Barx2 and Pax7 have antagonistic functions in regulation of wnt signaling and satellite cell differentiation.
No sample metadata fields
View SamplesFACS sorted TPCs (CD24HighCD44LowEpCAMHigh) and non-TPCs (CD24Low, CD24HighCD44High, and CD24HighCD44LowEpCAMLow) from mouse primary SCLC tumors
Identification and Targeting of Long-Term Tumor-Propagating Cells in Small Cell Lung Cancer.
Specimen part
View SamplesAutism spectrum disorder (ASD) is a neurodevelopmental disease with complex heterogeneity and aberrations in multiple levels of neurobiology. Recently, our understanding of the molecular abnormalities in ASD has been greatly expanded through transcriptomic analyses of postmortem brains. However, a crucial molecular pathway involved in synaptic development, RNA editing, has not yet been studied on a genome-wide scale. Here we profiled the global patterns of adenosine-to-inosine (A-to-I) editing in a large cohort of ASD cortices and cerebella. Strikingly, we observed a global bias of hypoediting in ASD brains, common to different brain regions and involving many genes with critical neurological function. The large-scale RNA editing changes allowed us to reveal novel insights of RNA editing regulation. Through genome-wide protein-RNA binding analyses and detailed molecular assays, we show that the Fragile X proteins, FMRP and FXR1P, interact with ADAR protens and modulate A-to-I editing. Furthermore, we observed convergent patterns of RNA editing alterations between ASD and Fragile X syndrome, thus establishing RNA editing as a novel molecular link underlying these two highly related diseases. Our findings support a role for RNA editing dysregulation in ASD pathophysiology and highlight novel mechanisms for RNA editing regulation. Overall design: RNA-seq to examine RNA editing in Fragile X patients
Widespread RNA editing dysregulation in brains from autistic individuals.
Specimen part, Subject
View SamplesTranscription profiling of wild type, relA-, and relA-spoT-, crp-, dksA-, rpoS-, lrp- mutant strains of E. coli starved for isoleucine
The global, ppGpp-mediated stringent response to amino acid starvation in Escherichia coli.
No sample metadata fields
View SamplesBrown adipose tissue is specialized to burn lipids for heat generation as a natural defense against cold and obesity. Previous studies established microRNAs as essential regulators of brown adipocyte differentiation, but it remains unknown whether microRNAs are required for the feature maintenance of mature brown adipocytes. To address this question, we ablated Dgcr8, a key regulator of the microRNA biogenesis pathway, in mature brown as well as white adipocytes. The adipose tissue -specific Dgcr8 knockout mice displayed enlarged but pale interscapular brown fat with decreased expression of genes characteristic of brown fat, and the mice were intolerant to cold exposure. In vitro primary brown adipocyte cultures confirmed that microRNAs are required for marker gene expression in mature brown adipocytes. We also demonstrated that microRNAs are essential for the browning of subcutaneous white adipocyte both in vitro and in vivo. Using this animal model, we performed microRNA expression profiling analysis and identified a set of BAT-specific microRNAs that are up-regulated during brown adipocyte differentiation and enriched in brown fat compared to other organs. We identified miR-182 and miR-203 as new regulators of brown adipocyte development. Taken together, our study demonstrates an essential role of microRNAs in the maintenance as well as the differentiation of brown adipocytes. Overall design: TotalRNAs were extracted using a Qiagen kit, and 5 µg of total RNAs for each sample were used to prepare the mRNA- Seq library according to the manufacturer’s instruction (NEB). cDNA libraries were prepared and sequenced by Hi-seq in Whitehead Genome Core. 2 replicates of each treatment were analyzed.
MicroRNAs are required for the feature maintenance and differentiation of brown adipocytes.
No sample metadata fields
View SamplesThe Clade A PP2C Highly ABA-Induced1 (HAI1, At5g59220) is strongly up-regulated by low water potential in an ABA-dependent manner. Using knockout mutants of hai1, we found that HAI1 functions as a negative regulator of low water potential-induced proline and osmoregulatory solute accumulation. We also found a relatively weak and limited interaction of HAI1 with the RCAR/PYL family of ABA receptors. This, plus its induced expression, suggest that HAI1 remains active during stress and attenuates specific aspects of drought response.
Unique drought resistance functions of the highly ABA-induced clade A protein phosphatase 2Cs.
Specimen part, Treatment
View SamplesTransfer cells (TCs) play important roles in facilitating enhanced rates of nutrient transport at key apoplasmic/symplasmic junctions along the nutrient acquisition and transport pathways in plants. TCs achieve this capacity by developing elaborate wall ingrowth networks which serve to increase plasma membrane surface area thus increasing the cell's surface area-to-volume ratio to achieve increased flux of nutrients across the plasma membrane. Phloem parenchyma (PP) cells of Arabidopsis leaf veins trans-differentiate to become PP TCs which likely function in a two-step phloem loading mechanism by facilitating unloading of photoassimilates into the apoplasm for subsequent energy-dependent uptake into the sieve element/companion cell (SE/CC) complex. We are using PP TCs in Arabidopsis as a genetic model to identify transcription factors involved in coordinating deposition of the wall ingrowth network. Confocal imaging of pseudo-Schiff propidium iodide-stained tissue revealed different profiles of temporal development of wall ingrowth deposition across maturing cotyledons and juvenile leaves, and a basipetal gradient of deposition across mature adult leaves. RNA-Seq analysis was undertaken to identify differentially expressed genes common to these three different profiles of wall ingrowth deposition. This analysis identified 68 transcription factors up-regulated two-fold or more in at least two of the three experimental comparisons, with six of these transcription factors belonging to Clade III of the NAC-domain family. Phenotypic analysis of these NAC genes using insertional mutants revealed significant reductions in levels of wall ingrowth deposition, particularly in a double mutant of NAC056 and NAC018, as well as compromised sucrose-dependent root growth, indicating impaired capacity for phloem loading. Collectively, these results support the proposition that Clade III members of the NAC domain family in Arabidopsis play important roles in regulating wall ingrowth deposition in PP TCs. Overall design: The sampling enabled three different temporal and spatial pair-wise comparisons for RNA-Seq analysis, namely: (i) cotyledons at Day 5 vs Day 10; (ii) Leaf 1 and Leaf 2 (first juvenile leaves) at Day 10 vs Day 16; and (iii) basal vs apical third (base vs tip) of Leaf 12 at Day 31. This analysis provided temporal and spatial comparisons of tissues with absent vs abundant wall ingrowth deposition in phloem parenchyma transfer cells.
Transcript Profiling Identifies NAC-Domain Genes Involved in Regulating Wall Ingrowth Deposition in Phloem Parenchyma Transfer Cells of <i>Arabidopsis thaliana</i>.
Specimen part, Subject
View SamplesTo address the functional role of KDM6A in the regulation of Rhox genes, male and female mouse ES cells were transfected with a mixture of three small interfering RNA duplexes, each of which targets a different region of Kdm6a mRNA. We found that Kdm6a knockdown in mouse ES cells caused a decrease in expression of a subset of Rhox genes, Rhox6 and 9. Furthermore, Rhox6 and 9 expression was decreased in female ES cells but not male ES cells indicating that KDM6A regulates Rhox gene expression in a sexually dimorphic manner.
Female bias in Rhox6 and 9 regulation by the histone demethylase KDM6A.
Specimen part, Cell line
View Samples