refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 279 results
Sort by

Filters

Technology

Platform

accession-icon SRP042158
RNA-seq analysis of vorinostat-resistant HCT116 cells following gene knockdown of GLI1 or PSMD13 with or without vorinostat treatment
  • organism-icon Homo sapiens
  • sample-icon 42 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Transcriptome analysis was conducted on vorinostat resistant HCT116 cells (HCT116-VR) upon knockdown of potential vorinostat resistance candidate genes in the presence and absence of vorinostat. Potential vorinostat resistance candidate genes chosen for this study were GLI1 and PSMD13, which were identified through a genome-wide synthetic lethal RNA interference screen. To understand the transcriptional events underpinning the effect of GLI1 and PSMD13 knockdown (sensitisation to vorinostat-induced apoptosis), cells were first subjected to gene knockdown, then to treatment with vorinsotat or the solvent control. Two timepoints for drug treatment were assessed: a timepoint before induction of apoptosis (4hrs for siGLI1 and 8hrs for siPSMD13) and a timepoint when apoptosis could be detected (8hrs for siGLI1 and 12hrs for siPSMD13). Overall design: There are 42 samples in total, from triplicate independent biological experiments of 14 samples each.

Publication Title

A genome scale RNAi screen identifies GLI1 as a novel gene regulating vorinostat sensitivity.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP074892
HDAC inhibitor panobinostat engages host immune defenses to promote the tumoricidal effects of trastuzumab in HER2+ tumors
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Characterisation of the tumor extrinsic (immune-mediated) mechanisms by which panobinostat and trastuzumab can collaboratively promote tumor-associated NK cell infiltration to eradicate trastuzumab-refractory HER2+ tumors Overall design: RNA sequencing was performed on established whole AU565(pv) HER2+ human breast tumors, harvested from SCID mice 2-days post treatment initiation with vehicle (PBS/D5W), panobinostat (15mg/kg/day), trastuzumab (10mg/kg day 1) or both drugs in combination. Each treatment group comprised of 4 mice.

Publication Title

HDAC Inhibitor Panobinostat Engages Host Innate Immune Defenses to Promote the Tumoricidal Effects of Trastuzumab in HER2<sup>+</sup> Tumors.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE28422
Effects of resistance exercise and resistance training on the skeletal muscle transcriptome in young and old adults
  • organism-icon Homo sapiens
  • sample-icon 109 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Global microarray (HG U133 Plus 2.0) was used to investigate the effects of resistance exercise and resistance training on the skeletal muscle transcriptome profile of 28 young and old adults. Vastus lateralis muscle biopsies were obtained pre and 4hrs post resistance exercise in the beginning (untrained state) and at the end (trained state) of a 12 wk progressive resistance training program.

Publication Title

Transcriptome signature of resistance exercise adaptations: mixed muscle and fiber type specific profiles in young and old adults.

Sample Metadata Fields

Sex, Specimen part, Time

View Samples
accession-icon GSE28392
Effects of resistance exercise on the transcriptome in MHC I and MHC IIa muscle fibers of young and old women
  • organism-icon Homo sapiens
  • sample-icon 70 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Global microarray (HG U133 Plus 2.0) was used for the first time to investigate the effects of resistance exercise on the transcriptome in slow-twitch myosin heavy chain (MHC) I and fast-twitch MHC IIa muscle fibers of young and old women. Vastus lateralis muscle biopsies were obtained pre and 4hrs post resistance exercise in the beginning (untrained state) and at the end (trained state) of a 12 wk progressive resistance training program.

Publication Title

Transcriptome signature of resistance exercise adaptations: mixed muscle and fiber type specific profiles in young and old adults.

Sample Metadata Fields

Sex, Specimen part, Subject, Time

View Samples
accession-icon GSE25941
Effects of age on the skeletal muscle transcriptome
  • organism-icon Homo sapiens
  • sample-icon 34 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Global microarray (HG U133 Plus 2.0) was used to investigate the basal level skeletal muscle transcriptome profile of young and old adults. One vastus lateralis muscle biopsy was obtained in the basal state from 36 different subjects.

Publication Title

Transcriptome signature of resistance exercise adaptations: mixed muscle and fiber type specific profiles in young and old adults.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE72406
Identification and targeting of long-term tumor propagating cells in small cell lung cancer
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

FACS sorted TPCs (CD24HighCD44LowEpCAMHigh) and non-TPCs (CD24Low, CD24HighCD44High, and CD24HighCD44LowEpCAMLow) from mouse primary SCLC tumors

Publication Title

Identification and Targeting of Long-Term Tumor-Propagating Cells in Small Cell Lung Cancer.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE60528
Mouse GM-CSF-related alveolar macrophage genome-wide expression data
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

GM-CSF receptor- deficient (Csf2rb/ or KO) mice develop a lung disease identical to hereditary pulmonary alveolar proteinosis (hPAP) in humans with recessive CSF2RA or CSF2RB mutations that impair GM-CSF receptor function. We performed pulmonary macrophage transplantation (PMT) of bone marrow derived macrophages (BMDMs) without myeloablation in Csf2rb/mice. BMDMs were administered by endotracheal instillation into 2 month-old Csf2rb/ mice. Results demonstrated that PMT therapeutic of hPAP in Csf2rb/ mice was highly efficacious and durable. Alveolar macrophages were isolated by bronchoalveolar lavage one year after administration subjected to microarray analysis to determine the effects of PMT therapy on the global gene expression profile.

Publication Title

Pulmonary macrophage transplantation therapy.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP126674
Extreme heterogeneity of influenza virus infection in single cells
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Viral infection can dramatically alter a cell''s transcriptome. However, these changes have mostly been studied by bulk measurements on many cells. Here we use single-cell mRNA sequencing to examine the transcriptional consequences of influenza virus infection. We find extremely wide cell-to-cell variation in production of viral gene transcripts -- viral transcripts compose less than a percent of total mRNA in many infected cells, but a few cells derive over half their mRNA from virus. Some infected cells fail to express at least one viral gene, and this gene absence partially explains variation in viral transcriptional load. Despite variation in total viral load, the relative abundances of viral mRNAs are fairly consistent across infected cells. Activation of innate immune pathways is rare, but some cellular genes co-vary in abundance with the amount of viral mRNA. Overall, our results highlight the complexity of viral infection at the level of single cells. Overall design: Dataset consists of a total of five single-cell datasets generated using the 10x Genomics Chromium Single Cell 3'' Solution platform. All samples were generated from a tissue culture infection model using A549 cells from ATCC and Influenza A/WSN/1933 virus. Uninfected control sample identically processed. Infected samples were generated from cells infected for 6, 8, and 10 hours with a single replicate at 8 hours.

Publication Title

Extreme heterogeneity of influenza virus infection in single cells.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE97743
Host transcription profile in nasal epithelium and blood of hospitalized children under two years old with Respiratory Syncitial Virus infection
  • organism-icon Homo sapiens
  • sample-icon 332 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Host Transcription Profile in Nasal Epithelium and Whole Blood of Hospitalized Children Under 2 Years of Age With Respiratory Syncytial Virus Infection.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Disease stage

View Samples
accession-icon SRP066675
Single-cell transcriptomics reveals receptor transformations during olfactory neurogenesis
  • organism-icon Mus musculus
  • sample-icon 93 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We report RNA sequencing of single olfactory neurons from mouse olfactory epithelium in developmental progression from progenitors to precursors to immature neurons to mature neurons. Most mature neurons expressed only one of ~ 1000 odorant receptor genes (Olfrs) at high levels, whereas many immature neurons expressed low levels of multiple Olfrs. Overall design: Investigating expression of odorant receptors genes in mouse olfactory sensory neurons during development.

Publication Title

Single-cell transcriptomics reveals receptor transformations during olfactory neurogenesis.

Sample Metadata Fields

Cell line, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact