Human aortic smooth muscles are quiesced for 24 hours followed by treatment with thrombin for 2 hours and 8 hours in presence or absence of cyclosporin A (10 micromolar) to analyze the effect of thrombin on expression pattern of various genes in presence of cyclosporin A.
LIM and cysteine-rich domains 1 is required for thrombin-induced smooth muscle cell proliferation and promotes atherogenesis.
Specimen part, Treatment
View SamplesBackground: The diverse immunomodulatory effects of vitamin D are increasingly being recognized. However, the ability of oral vitamin D to modulate immune responses in vivo has not been established in humans. Methods: Twenty healthy adults were randomized to receive placebo or a single high dose of vitamin D3 (cholecalciferol) one hour after localized skin irradiation with an erythemogenic dose of ultraviolet radiation. Primary outcomes included skin redness, skin thickness, and tissue expression of inflammatory mediators (TNF- and iNOS). Secondary outcomes included microarray analyses. Results: As compared to placebo, subjects receiving vitamin D3 (200,000 IU) demonstrated reduced expression of TNF- (p=0.04) and iNOS (p=0.02) in skin biopsies 48 hours after ultraviolet light exposure. Demonstrated trends included reduced skin redness (p=0.17), and reduced skin thickness (p=0.09) in subjects receiving vitamin D3 (200,000 IU). Unsupervised clustering of individuals based on global gene expression revealed that subjects with enhanced skin barrier repair expression profiles had higher serum vitamin D3 levels (p=0.007), increased arginase expression (p=0.005), and a sustained reduction in skin redness (p=0.02) after treatment, as compared to subjects with enhanced inflammatory gene expression profiles.
Oral Vitamin D Rapidly Attenuates Inflammation from Sunburn: An Interventional Study.
Sex, Age, Specimen part, Race
View SamplesLong noncoding RNAs (lncRNAs) have been implicated in numerous cellular processes including brain development. Yet the in vivo expression dynamics and molecular pathways regulated by these molecules are less well understood. Here, we leveraged a cohort of 13 lncRNA null-mutant mouse models to investigate the spatio-temporal expression of lncRNAs in the developing and adult brain. We observed a wide range of different spatio-temporal expression profiles in the brain. Several lncRNAs are differentially expressed both in time and space, and others present highly restricted expression in only selected brain regions. We further explore the consequent transcriptome alterations after loss of these lncRNA loci, and demonstrate altered regulation of a large variety of cellular pathways and processes. We further found that 6/13 lncRNA null-mutant strains significantly affect the expression of several neighboring protein-coding genes, in a cis-like manner. This resource provides insight into the expression patterns and potential effect of lncRNA loci in the developing and adult mammalian brain, and allows future examination of the specific functional relevance of these genes in neural development, brain function, and disease. We have sequenced wildtype and mutant whole brains from a cohort of 13 lncRNA knockout mouse strains at two developmetal timepoints (E14.5 and adult). Overall design: Comparison between wildtype and mutant whole brains transcriptomes in 13 lncRNA mutant strains at two different timepoints. Please note that for each knockout strain there are KO_E14.5 and KO_Adult samples, however for WT, each KO strain was compared to a cohort of 14 WTs (N3 background) and 3 WTs (N2.5 background) at either Adult or E14.5 timepoint. So in total there are 14 WT_Adult and 14 WT_E14.5 and in each differential analysis the 2 or 3 KOs (in N3 background) were compared to this entire cohort at the respective timepoint; a cohort of 3 WT_adult (N2.5) or 3 WT_E14.5 samples compared to other N2.5 KO samples at the respective timepoint. Thus, each processed data file was generated by comparing each KO strain to a cohort of WTs (at either Adult or E14.5 timepoint; ko_vs_WT_Adult or ko_vs_WT_embryonic). The mouse strain (background) used in these experiments a cross between 129 and C57BL/6 in the third generation (N3) of breeding in the C57BL/6 line, with the exception of the KANTR mice, which are N2.5.
Spatiotemporal expression and transcriptional perturbations by long noncoding RNAs in the mouse brain.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Host Transcription Profile in Nasal Epithelium and Whole Blood of Hospitalized Children Under 2 Years of Age With Respiratory Syncytial Virus Infection.
Sex, Age, Specimen part, Disease, Disease stage
View SamplesGlobal microarray (HG U133 Plus 2.0) was used to investigate the effects of resistance exercise and resistance training on the skeletal muscle transcriptome profile of 28 young and old adults. Vastus lateralis muscle biopsies were obtained pre and 4hrs post resistance exercise in the beginning (untrained state) and at the end (trained state) of a 12 wk progressive resistance training program.
Transcriptome signature of resistance exercise adaptations: mixed muscle and fiber type specific profiles in young and old adults.
Sex, Specimen part, Time
View SamplesGlobal microarray (HG U133 Plus 2.0) was used for the first time to investigate the effects of resistance exercise on the transcriptome in slow-twitch myosin heavy chain (MHC) I and fast-twitch MHC IIa muscle fibers of young and old women. Vastus lateralis muscle biopsies were obtained pre and 4hrs post resistance exercise in the beginning (untrained state) and at the end (trained state) of a 12 wk progressive resistance training program.
Transcriptome signature of resistance exercise adaptations: mixed muscle and fiber type specific profiles in young and old adults.
Sex, Specimen part, Subject, Time
View SamplesGlobal microarray (HG U133 Plus 2.0) was used to investigate the basal level skeletal muscle transcriptome profile of young and old adults. One vastus lateralis muscle biopsy was obtained in the basal state from 36 different subjects.
Transcriptome signature of resistance exercise adaptations: mixed muscle and fiber type specific profiles in young and old adults.
Sex, Specimen part
View SamplesWe report an applicaton of small RNA sequencing using high throughput next generation sequencing to identify the small RNA content of cell lines. By sequencing over 30 million reads we could identify a new class of small RNAs previousy observed with tiling arrays and mapping to promoter regions of coding genes. We also identified a large number of small RNAs corresponding to internal exons of coding genes. By using different enzymatic treatments and immunoprecipitation experiments, we have determined that both the promoter associated small RNAs as well as ones within the body of the genes bear 5'' cap structures. Overall design: Examination of the expression of small RNAs (<200nt).
Post-transcriptional processing generates a diversity of 5'-modified long and short RNAs.
No sample metadata fields
View SamplesGM-CSF receptor- deficient (Csf2rb/ or KO) mice develop a lung disease identical to hereditary pulmonary alveolar proteinosis (hPAP) in humans with recessive CSF2RA or CSF2RB mutations that impair GM-CSF receptor function. We performed pulmonary macrophage transplantation (PMT) of bone marrow derived macrophages (BMDMs) without myeloablation in Csf2rb/mice. BMDMs were administered by endotracheal instillation into 2 month-old Csf2rb/ mice. Results demonstrated that PMT therapeutic of hPAP in Csf2rb/ mice was highly efficacious and durable. Alveolar macrophages were isolated by bronchoalveolar lavage one year after administration subjected to microarray analysis to determine the effects of PMT therapy on the global gene expression profile.
Pulmonary macrophage transplantation therapy.
Specimen part, Treatment
View SamplesA fundamental challenge in the post-genome era is to understand and annotate the consequences of genetic variation, particularly within the context of human tissues. We describe a set of integrated experiments designed to investigate the effects of common genetic variability on DNA methylation, mRNA expression and microRNA (miRNA) expression in four distinct human brain regions. We show that brain tissues may be readily distinguished based on methylation status or expression profile. We find an abundance of genetic cis regulation mRNA expression and show for the first time abundant quantitative trait loci for DNA CpG methylation. We observe that the largest magnitude effects occur across distinct brain regions. We believe these data, which we have made publicly available, will be useful in understanding the biological effects of genetic variation.
Abundant quantitative trait loci exist for DNA methylation and gene expression in human brain.
Sex, Age, Specimen part
View Samples