CD133 is expressed by a subpopulation of human fetal hair follicle placode cells during early hair development. Its expression, which is gradually lost as the placode matures, correlates with early morphogenesis.
CD133 expression correlates with membrane beta-catenin and E-cadherin loss from human hair follicle placodes during morphogenesis.
Age, Specimen part
View SamplesWe report transcriptomes of myofibroblasts from mouse skin wounds. Myofibroblasts were FACS sorted as Zombie-neg;tdTomato-hi cells from Sm22-Cre;TdTomato mice. We identified and analyzed 4,120 differentially expressed transcripts across four post-wounding time points, day 12, day 15, day 21 and day 26. Overall design: Examination of FACS sorted wound myofibroblasts from four consecutive post-wounding time points
Regeneration of fat cells from myofibroblasts during wound healing.
Specimen part, Subject
View SamplesExpression of the proendocrine gene neurogenin 3 (Ngn3) is required for the development of pancreatic islets. In order to better characterize the molecular events regulated by Ngn3 during development, we have determined the expression profile of differentiating murine embryonic stem cells (mESCs) uniformly induced to overexpress Ngn3. An ESC line was created that allows for the induction of Ngn3 by adding doxycycline (Dox) to the culture medium. Genome-wide microarray analysis was performed to identify genes regulated by Ngn3 in a variety of both undifferentiated and differentiated conditions. Characterization of pancreatic developmental markers during embryoid body (EB) formation revealed an optimum context for Ngn3 induction. Neuroendocrine genes including neurogenic differentiation 1 (NeuroD1) and single minded 1 (Sim1) were found to be significantly upregulated. Genes regulated by Ngn3 independent of the context were analyzed using systematic gene ontology tools and revealed Notch signaling as the most significantly regulated signaling pathway (p=0.009). This result is consistent with the hypothesis that Ngn3 expression makes the cell competent for Notch signaling to be activated and conversely, more sensitive to Notch signaling inhibition. Indeed, EBs induced to express Ngn3 were significantly more sensitive to gamma-secretase inhibitor-mediated Notch signaling inhibition (p<0.0001). Moreover, we find that Ngn3 induction in differentiating ESCs results in significant increases in insulin, glucagon, and somatostatin transcription.
Differentiation of embryonic stem cells conditionally expressing neurogenin 3.
No sample metadata fields
View SamplesSummary:
HCaRG increases renal cell migration by a TGF-alpha autocrine loop mechanism.
No sample metadata fields
View SamplesHEK293 cells were transfected with control plasmid (pcDNAI/Neo;Invitrogen) or with the plasmid encoding HCaRG. Stable transfectants were synchronized and grown in the presence of 10% FBS for 48 h. Total RNAs were purified with the mini RNeasy kit (Qiagen).
HCaRG increases renal cell migration by a TGF-alpha autocrine loop mechanism.
No sample metadata fields
View SamplesThe SCL and LMO1 oncogenic transcription factors reprogram thymocytes into self-renewing pre-leukemic stem cells (pre-LSCs). Here we report that SCL directly interacts with LMO1 to activate the transcription of a self-renewal program coordinated by LYL1.
SCL, LMO1 and Notch1 reprogram thymocytes into self-renewing cells.
Age, Specimen part
View SamplesThis study examined the gene expression effects of treating androgen-deprived C4-2 prostate cancer cells with the ACLY inhibitor BMS-303141 and the AR antagonist enzalutamide. Overall design: Cells were treated with vehicle control, ACLY inhibitor alone, Enzalutamide alone, and ACLY-inhibitor and Enzalutamide combined together for 24 hours under androgen-depleted conditions (RPMI + 5% charcoal stripped serum). Biological triplicate samples were prepared.
Targeting ACLY sensitizes castration-resistant prostate cancer cells to AR antagonism by impinging on an ACLY-AMPK-AR feedback mechanism.
Subject
View SamplesRNA-sequencing from Aclyf/f and Acly-/- preadipocytes generated from Aclyf/f mice and induced to differentiate to adipocytes. Overall design: Examination of gene expression during adipocyte differentiation, with Acly intact or deleted
Adipocyte ACLY Facilitates Dietary Carbohydrate Handling to Maintain Metabolic Homeostasis in Females.
Specimen part, Cell line, Subject, Time
View SamplesThe Drosophila TRIM-NHL protein Brain tumor (Brat) plays important roles during early embryogenesis, in cell fate decisions, during neurogenesis and in mature neurons. Brat is an RNA-binding protein and functions as translational repressor. However, which RNAs Brat regulates and how RNA-binding specificity is achieved, is unknown. Using RNA-Immunoprecipitation we identify Brat-bound mRNAs in Drosophila embryos and define a consensus binding motif.
The Crystal Structure of the NHL Domain in Complex with RNA Reveals the Molecular Basis of Drosophila Brain-Tumor-Mediated Gene Regulation.
Specimen part
View SamplesBackground Alternative splicing (AS) is a central mechanism of genetic regulation which modifies the sequence of RNA transcripts in higher eukaryotes. AS has been shown to increase both the variability and diversity of the cellular proteome by changing the composition of resulting proteins through differential choice of exons to be included in mature mRNAs. Results In the present study, alterations to the global RNA splicing landscape of cellular genes upon viral infection were investigated through high-throughput RNA sequencing (RNA-seq) studies using mammalian reovirus as a model. Our study provides the first comprehensive portrait of global changes in the RNA splicing signatures that occur in eukaryotic cells following infection with a human virus. We identify modifications in the AS patterns of 240 cellular transcripts frequently involved in the regulation of gene expression and RNA metabolism. A significant number of the modified transcripts are also encoded by genes with important roles in viral infection/immunity. These modifications are expected to alter the functions of many cellular proteins. Finally, we used RT-PCR analysis in order to experimentally validate differential modifications in alternative splicing patterns that were observed through RNA-seq studies. Conclusion The present study demonstrated that viral infection can extensively modify the splicing patterns of numerous cellular transcripts. These findings provide additional insights into the complexity of virus-host interactions as these splice variants expand proteome diversity and function during viral infection. Finally, these data open new avenues of research for a better understanding of post-transcriptional events during virus infection and possible new targets toward the development of antiviral agents. Overall design: mRNAs were isolated from L929 mouse cell line, 14 hours after infection with T3D-S Reovirus or T3D-S Mutant reovirus at a MOI of 50. Control cells were uninfected. The resulting libraries were multiplexed and paired-end sequenced using Illumina HiSeq. Gene expression and alternative splicing were caracterized using Bowtie and RSEM.
Global Profiling of the Cellular Alternative RNA Splicing Landscape during Virus-Host Interactions.
Specimen part, Cell line, Subject
View Samples