refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 124 results
Sort by

Filters

Technology

Platform

accession-icon GSE22132
Expression data from purified human platelets
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Patients with systemic lupus erythematosus (SLE) have a markedly increased risk to develop cardiovascular disease, and traditional cardiovascular risk factors fail to account for this increased risk. We used microarray to probe the platelet transcriptome in individuals with SLE and healthy controls, and the gene and protein expression of a subset of differentially expressed genes was further investigated and correlated to platelet activation status. Real-time PCR was used to confirm a type I interferon (IFN) gene signature in patients with SLE, and the IFN-regulated proteins PRKRA, IFITM1 and CD69 (p<0.0001) were found to be up-regulated in platelets from SLE patients as compared to healthy volunteers. Notably, patients with a history of vascular disease had increased expression of type I IFN-regulated proteins as well as more activated platelets as compared with patients without vascular disease. We suggest that interferogenic immune complexes stimulate production of IFN which up-regulates the megakaryocytic type I IFN-regulated genes and proteins. This could affect platelet activation and contribute to development of vascular disease in SLE. In addition, platelets with type I IFN signature could be a novel marker for vascular disease in SLE.

Publication Title

Platelet transcriptional profile and protein expression in patients with systemic lupus erythematosus: up-regulation of the type I interferon system is strongly associated with vascular disease.

Sample Metadata Fields

Sex, Age, Specimen part, Disease

View Samples
accession-icon GSE34872
Microarray analysis to identify Egfr-responsive genes
  • organism-icon Drosophila melanogaster
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome Array (drosgenome1)

Description

The highly conserved Epidermal Growth Factor-receptor (Egfr) pathway is required in all animals for normal development and homeostasis; consequently, aberrant Egfr signaling is implicated in a number of diseases. Genetic analysis of Drosophila melanogaster Egfr has contributed significantly to understanding this conserved pathway and has led to the discovery of new components and targets. Here we used microarray analysis of Drosophila third instar wing discs, in which Egfr signaling was perturbed, to identify new Egfr-responsive genes. Upregulated transcripts included five known targets suggesting the approach was valid. We investigated the function of 29 previously uncharacterized genes, which had pronounced responses. The Egfr pathway is important for wing-vein patterning and using reverse genetic analysis we identified five genes that showed venation defects. Three of these genes are expressed in vein primordia and all showed transcriptional changes in response to altered Egfr activity consistent with being targets of the pathway. Genetic interactions with Egfr further linked two of the genes, Sulfated (Sulf1), an endosulfatase gene, and CG4096, an ADAMTS (A Disintegrin And Metalloproteinase with ThromboSpondin motifs) gene, to the pathway. Sulf1 showed a strong genetic interaction with the neuregulin-like ligand vein (vn) and may influence binding of Vn to heparan-sulfated proteoglycans (HSPGs). Genetic evidence also shows that CG4096 functions by modulating activity of the Egfr ligands. The substrate(s) and how ligand activity is affected are unknown, but interestingly vertebrate EGF ligands are regulated by a related ADAMTS protein. We conclude Sulf1 and CG4096 are negative feedback regulators of Egfr signaling that function in the extracellular space to influence ligand activity.

Publication Title

New negative feedback regulators of Egfr signaling in Drosophila.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE77512
A specialized mechanism of translation mediated by FXR1a-associated microRNP in cellular quiescence
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

MicroRNAs predominantly decrease gene expression; however, specific mRNAs are translationally upregulated in quiescent (G0) mammalian cells and immature Xenopus laevis oocytes by an FXR1a-associated microRNP (microRNA-protein complex) that lacks the microRNP repressor, GW182. We conducted global proteomic analysis in THP1 cells depleted of FXR1 to globally identify activation targets of more than one microRNA, since FXR1 is required for microRNAmediated translation activation in THP1 G0 cells by FXR1-microRNPs.Since proteomic data changes could also be due to changes at the RNA level, total RNA levels in FXR1knockdown compared to control shRNA cells were examined in parallel by microarray analysis using Affymetrix Human GeneChip 2.0 ST.

Publication Title

A Specialized Mechanism of Translation Mediated by FXR1a-Associated MicroRNP in Cellular Quiescence.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE30522
Transcriptomes of human bladder cells and cells in bladder cancer
  • organism-icon Homo sapiens
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Characterization of the gene expression profiles of specific cell populations of the human urinary bladder provides an important set of research tools for the study of cellular differentiation and the cancer process. The transcriptome is a definitive identifier of each individual cell types. Surgically resected tissue was digested by collagenase and the different cell types were sorted by antibodies to cluster designation (CD) cell surface antigens. The sorted cells were analyzed by DNA microarrays. The transcriptome datasets were analyzed for differentially expressed genes and plotted on a principal components analysis space for cell lineage relationship. The following bladder cell types were analyzed: CD9+ urothelial, CD104+ basal, CD13+ stromal of lamina propria, CD9+ urothelial carcinoma cancer, and CD13+ urothelial carcinoma-associated stromal. Gene expression differences between the cell types of tumor and their respective non-cancer counterpart provide biomarker candidates. Basal cells of the bladder and prostate, although sharing CD cell surface markers, are quite different in overall gene expression. Furthermore, these cells lack transcript features of stem cell signature of embryonic stem or embryonal carcinoma cells. Cell type-specific transcriptomes are more informative than bulk tissue transcriptomes. The relatedness of different cell types can be determined by transcriptome dataset comparison.

Publication Title

Bladder expression of CD cell surface antigens and cell-type-specific transcriptomes.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE3998
Prostate cell specific expression
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Luminal, basal, stromal, and endothelial cells were MACS sorted from whole tissue. Targets from five biological replicates of each were generated and the expression profiles were determined using Affymetrix U133 Plus 2.0 arrays. These data represent cell specific transcriptomes.

Publication Title

Transcriptomes of human prostate cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE17906
Gene expression down-regulation in prostate tumor-associated stromal cells involves organ-specific genes
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The prostate stroma is a key mediator of epithelial differentiation and development, and potentially plays a role in the initiation and progression of prostate cancer. Isolation and characterization of viable populations of the constituent cell types of prostate tumors could provide valuable insight into the biology of cancer. The CD90+ stromal fibromuscular cells from tumor specimens were isolated by cell-sorting and analyzed by DNA microarray. Dataset analysis was used to compare gene expression between normal and tumor-associated reactive stromal cells. Reactive stroma is characterized by smooth muscle differentiation, prostate down-regulation of SPOCK3, MSMB, CXCL13, and PAGE4, bladder down-regulation of TRPA1, HSD17B2, IL24, and SALL1, and an up-regulation of CXC-chemokines. This study identified a group of differentially expressed genes in CD90+ reactive stromal cells that are potentially involved in organ development and smooth muscle cell differentiation.

Publication Title

Gene expression down-regulation in CD90+ prostate tumor-associated stromal cells involves potential organ-specific genes.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE143626
Deregulation of ribosomal protein expression and translation promotes breast cancer metastasis
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000, Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Deregulation of ribosomal protein expression and translation promotes breast cancer metastasis.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon GSE143625
Deregulation of ribosomal protein expression and translation promotes breast cancer metastasis [rna-uArray MCF10A]
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

We conducted an in vivo genome-wide CRISPR activation screen to identify genes that accelerate distal metastasis by breast cancer patient-derived circulating tumor cells (CTCs) following direct intravascular inoculation in mice. Regulators of translation and ribosomal proteins were prominent among these, and expression of RPL15, a component of the large ribosome subunit, was sufficient to increase metastatic growth in multiple organs. RPL15 overexpression selectively increases translation of other ribosomal proteins and cell cycle regulators. Unsupervised analysis of single-cell RNA sequencing of freshly-isolated CTCs from breast cancer patients identifies a subset with strong ribosomal and protein translation signatures, correlated with increased proliferative markers, epithelial markers and poor clinical outcome. Thus, ribosome protein expression identifies an aggressive subset of CTCs, whose therapeutic targeting may suppress metastatic progression.

Publication Title

Deregulation of ribosomal protein expression and translation promotes breast cancer metastasis.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE141332
A post-transcriptional program of chemoresistance by AU-rich elements and TTP in quiescent leukemic cells
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st), Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

A post-transcriptional program of chemoresistance by AU-rich elements and TTP in quiescent leukemic cells.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE141329
A post-transcriptional program of chemoresistance by AU-rich elements and TTP in quiescent leukemic cells [Human cell lines]
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

Quiescence (G0) is a transient, cell cycle-arrested state. By entering G0, cancer cells survive unfavorable conditions such as chemotherapy and cause relapse. While G0 cells have been studied at the transcriptome level, how post-transcriptional regulation contributes to their chemoresistance remains unknown. We induced chemoresistant and quiescent (G0) leukemic cells by serum-starvation or chemotherapy treatment. To study post-transcriptional regulation in G0 leukemic cells, we systematically analyzed their transcriptome, translatome, and proteome. We find that our resistant G0 cells recapitulate gene expression profiles of in vivo chemoresistant leukemic and G0 models. In G0 cells, canonical translation initiation is inhibited; yet we find that inflammatory genes are highly translated, indicating alternative post-transcriptional regulation. Importantly, AU-rich elements (AREs) are significantly enriched in the up-regulated G0 translatome and transcriptome. Mechanistically, we find the stress-responsive p38 MAPK-MK2 signaling pathway stabilizes ARE mRNAs by phosphorylation and inactivation of mRNA decay factor, tristetraprolin (TTP) in G0. This permits expression of ARE mRNAs that promote chemoresistance. Conversely, inhibition of TTP phosphorylation by p38 MAPK inhibitors and non-phosphorylatable TTP mutant decreases ARE-bearing TNFα and DUSP1 mRNAs and sensitizes leukemic cells to chemotherapy. Furthermore, co-inhibiting p38 MAPK and TNFα—prior to or along with chemotherapy—substantially reduced chemoresistance in primary leukemic cells ex vivo and in vivo. These studies uncover post-transcriptional regulation underlying chemoresistance in leukemia. Our data reveal the p38 MAPK-MK2-TTP axis as a key regulator of expression of ARE bearing mRNAs that promote chemoresistance. By disrupting this pathway, we developed an effective combination therapy against chemosurvival.

Publication Title

A post-transcriptional program of chemoresistance by AU-rich elements and TTP in quiescent leukemic cells.

Sample Metadata Fields

Cell line, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact