refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 238 results
Sort by

Filters

Technology

Platform

accession-icon GSE77867
Combined blockade of MET and EGFR abolishes liver regeneration
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Receptor tyrosine kinases MET and EGFR are critically involved in initiation of liver regeneration. Other cytokines and signaling molecules also help in the early part of the process. Regeneration employs effective redundancy schemes to compensate for missing signals. Elimination of any single signaling pathway only delays but does not abolish the process. Our present study, however, shows that combined systemic elimination of MET and EGFR signaling abolishes liver regeneration, prevents restoration of liver mass and leads to liver decompensation. Our results demonstrate that liver function is dependent on synchronous availability of signaling from these two pathways. The study shows that MET and EGFR separately control many non-overlapping signaling endpoints, allowing for compensation when only one of the signals is blocked. The combined elimination of the signals however was not tolerated. The results provide critical new information on interactive MET and EGFR signaling and the contribution of their combined absence to regeneration arrest and liver decompensation.

Publication Title

Combined systemic elimination of MET and epidermal growth factor receptor signaling completely abolishes liver regeneration and leads to liver decompensation.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE116307
Combined systemic disruption of MET and EGFR signaling causes liver failure in normal mice
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

MET and EGFR receptor tyrosine kinases are crucial for liver regeneration and normal hepatocyte function. Recently we demonstrated that in mice, combined inhibition of these two signaling pathways abolished liver regeneration following hepatectomy, with subsequent hepatic failure and death at 15-18 days post-resection. Morbidity was associated with distinct and specific alterations in important downstream signaling pathways that led to a decrease in hepatocyte volume, reduced proliferation, and shutdown of many essential hepatocyte functions such as fatty acid synthesis, urea cycle, and mitochondrial functions. In the present study we explore the role of MET and EGFR signaling in resting mouse livers that are not subjected to hepatectomy. Mice with combined disruption of MET and EGFR signaling (Delta MET + EGFRi) were noticeably sick by 10 day and died at 12-14 days. Delta MET + EGFRi mice showed decreased liver to body weight ratios, increased apoptosis in non-parenchymal cells, impaired liver metabolic functions, and activation of distinct, downstream signaling pathways related to inflammation, cell death, and survival. Conclusion: The present study demonstrates that in addition to controlling the regenerative response, MET and EGFR synergistically control baseline liver homeostasis in normal mice in such a way that their combined disruption leads to liver failure and death.

Publication Title

Combined Systemic Disruption of MET and Epidermal Growth Factor Receptor Signaling Causes Liver Failure in Normal Mice.

Sample Metadata Fields

Time

View Samples
accession-icon GSE46498
Atrial Identity Is Determined by A COUP-TFII Regulatory Network
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Atrial identity is determined by a COUP-TFII regulatory network.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE46496
Atrial Identity Is Determined by A COUP-TFII Regulatory Network (RNA)
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Atria and ventricles exhibit distinct molecular profiles that produce structural and functional differences between the two cardiac compartments. However, factors that determine these differences remain largely undefined. Cardiomyocyte-specific COUP- TFII ablation produces ventricularized atria that exhibit ventricle-like action potentials, increased cardiomyocyte size, and development of extensive T-tubules.

Publication Title

Atrial identity is determined by a COUP-TFII regulatory network.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE33182
Expression data from control and COUP-TFII siRNA treated PC3 cells
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

COUP-TFII, a member of the nuclear receptor superfamily plays a critical role in angiogenesis and organogenesis during embryonic development. Our results indicate that COUP-TFII expression is profoundly upregulated in prostate cancer patients and might serves as biomarker for recurrence prediction. Thus we conduct transcriptome comparison of control and COUP-TFII depleted PC3 cells to gain genomic insights on the biological processes that COUP-TFII is involved in prostate cancer cells. Ingenuity Pathway Analysis (IPA) shows that the most prominent altered pathways in the COUP-TFII depleted cells are related to cell growth; cell cycle progression and DNA damage response. Indeed many growth related genes including E2F1, p21, CDC25A, Cyclin A and Cyclin B are changed in COUP-TFII knockdown cells, suggesting that COUP-TFII might be an important regulator for prostate cancer cell growth. Further functional assays from cells and mice genetic studies confirm the hypothesis that COUP-TFII serve as the major regulator to control prostrate cancer growth. Together, results provide insight into the role of COUP-TFII in prostate tumorigenesis.

Publication Title

COUP-TFII inhibits TGF-β-induced growth barrier to promote prostate tumorigenesis.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE37046
Combined microRNA/mRNA transcriptome analysis reveals angiogenic microRNAs-genes pathway of human late endothelial precursor cells.
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Deficiency of the microRNA-31-microRNA-720 pathway in the plasma and endothelial progenitor cells from patients with coronary artery disease.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
accession-icon GSE37045
Gene expression patterns of distinct human endothelial precursor cells
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Early EPCs (eEPCs) appear at less than 1 week in culture dishes, whereas late EPCs (LEPCs) appear late at 2-4 weeks. Distinct angiogenic properties between these two EPC subpopulations have been disclosed by the angiogenesis assay: late EPCs, but not eEPCs, form vascular networks de novo and are able to incorporate into vascular networks. On the contrary, eEPCs, but not late ones, indirectly augment tubulogenesis even when physically separated by a Transwell membrane, implying the involvement of a cytokine-based paracrine mechanism.

Publication Title

Deficiency of the microRNA-31-microRNA-720 pathway in the plasma and endothelial progenitor cells from patients with coronary artery disease.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE37044
mRNA expression profiles in far-infrared treated human endothelial precursor cells
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

High glucose impairs the angiogenic activities of late endothelial precursor cells (EPC). We found that far infrared (FIR) treatment restored partially the activity of late EPC. However, the mechanisms are unclear. We performed gene expression microarray analysis to assess the expression profiles of high glucose-treated late EPC with or without FIR treatment.

Publication Title

Deficiency of the microRNA-31-microRNA-720 pathway in the plasma and endothelial progenitor cells from patients with coronary artery disease.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE23882
Microarray analysis of gene expression profile in HCT116 colon cancer cells expressed the isoform A or isoform B of the Tazarotene-induced gene 1.
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Tazarotene-induced gene 1 (TIG1), also named as retinoic acid receptor responder 1 (RARRES1), is a retinoid inducible type II tumor suppressor gene; the TIG1B isoform inhibits growth and invasion of cancer cells. Expression of TIG1B is frequently downregulated in various cancer tissues; however, the expression and activities of the TIG1A isoform has yet to be analyzed. This study investigated the effects of TIG1A and TIG1B isoforms on gene expression profiles of colon cancer cells. TIG1A, TIG1B and control stable clones derived from HCT116 colon cells were established using the GeneSwitch system. TIG1 isoform expression was induced upon 5 micro Molar of mifepristone (MFP) treatment for 24 hr. Biological triplicate samples were prepared and gene expression profiles were determined by microarray using human genome HGU133 plus 2 array (Affymatrix). Upon induction of TIG1A and TIG1B expression for 24 hr, a total of 129 and 55 genes were significantly altered, respectively. Of the genes analyzed, 23 and 6 genes were up- and downregulated, respectively in both TIG1A and TIG1B expressing cells.

Publication Title

G protein-coupled receptor kinase 5 mediates Tazarotene-induced gene 1-induced growth suppression of human colon cancer cells.

Sample Metadata Fields

Cell line, Time

View Samples
accession-icon GSE33301
Expression data from control and COUP-TFII siRNA treated HUVEC cells
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

COUP-TFII plays a critical role in angiogenesis during development. It has also been shown to suppress Notch signaling pathway to confer vein identity. However, the downstream targets and the mechanism mediate COUP-TFII function to regulate these processes remain elusive. To identify the downstream targets and the mechanism by which COUP-TFII regulates agiogenesis and vein specification, we knocked down COUP-TFII in HUVEC cells using COUP-TFII specific siRNA and used microarray analysis to identify downstream targets. Interestingly, we found the expression of many genes in the cell cycle pathway and Notch signaling pathway are significantly altered in the COUP-TFII depleted cells.

Publication Title

COUP-TFII is a major regulator of cell cycle and Notch signaling pathways.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact