refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 238 results
Sort by

Filters

Technology

Platform

accession-icon GSE29598
A Methodology for Utilization of Predictive Genomic Signatures in FFPE Samples
  • organism-icon Homo sapiens
  • sample-icon 117 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Purpose: Gene expression signatures developed to measure the activity of oncogenic signaling pathways have been used to dissect the heterogeneity of tumor samples and to predict sensitivity to various cancer drugs that target components of the relevant pathways, thus potentially identifying therapeutic options for subgroups of patients. To facilitate broad use, including in a clinical setting, the ability to generate data from formalin-fixed, paraffin-embedded (FFPE) tissues is essential. Experimental Design: Patterns of pathway activity in matched fresh-frozen and FFPE xenograft tumor samples were generated using the MessageAmp Premier methodology in combination with assays using Affymetrix arrays. Results generated were compared with those obtained from fresh-frozen samples using a standard Affymetrix assay. In addition, gene expression data from patient matched fresh-frozen and FFPE melanomas were also utilized to evaluate the consistency of predictions of oncogenic signaling pathway status. Results: Significant correlation of pathway activity predictions was observed between paired fresh-frozen and FFPE xenograft tumor samples. In addition, significant concordance of pathway activity predictions was also observed between patient matched fresh-frozen and FFPE melanomas. Conclusion: Reliable and consistent predictions of oncogenic pathway activities can be obtained from FFPE tumor tissue samples. The ability to reliably utilize FFPE patient tumor tissue samples for genomic analyses will lead to a better understanding of the biology of disease progression and, in the clinical setting, will provide tools to guide the choice of therapeutics to those most likely to be effective in treating a patients disease.

Publication Title

A methodology for utilization of predictive genomic signatures in FFPE samples.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE28691
Characterization of an Oxaliplatin Sensitivity Predictor in a preclinical Murine Model of Colorectal Cancer
  • organism-icon Homo sapiens
  • sample-icon 40 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Despite advances in contemporary chemotherapeutic strategies, long term survival still remains elusive for patients with metastatic colorectal cancer. A better understanding of the molecular markers of drug sensitivity to match therapy with patient is needed to improve clinical outcomes. In this study, we used in vitro drug sensitivity data from the NCI-60 cell lines together with their Affymetrix microarray data to develop a gene expression signature to predict sensitivity to oxaliplatin. In order to validate our oxaliplatin sensitivity signature, Patient-Derived Colorectal Cancer Explants (PDCCEs) were developed in NOD-SCID mice from resected human colorectal tumors. Analysis of gene expression profiles found similarities between the PDCCEs and their parental human tumors, suggesting their utility to study drug sensitivity in vivo. The oxaliplatin sensitivity signature was then validated in vivo with response data from 14 PDCCEs treated with oxaliplatin and was found to have an accuracy of 92.9% (Sensitivity=87.5%; Specificity=100%). Our findings suggest that PDCCEs can be a novel source to study drug sensitivity in colorectal cancer. Furthermore, genomic-based analysis has the potential to be incorporated into future strategies to optimize individual therapy for patients with metastatic colorectal cancer.

Publication Title

Characterization of an oxaliplatin sensitivity predictor in a preclinical murine model of colorectal cancer.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE46498
Atrial Identity Is Determined by A COUP-TFII Regulatory Network
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Atrial identity is determined by a COUP-TFII regulatory network.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE46496
Atrial Identity Is Determined by A COUP-TFII Regulatory Network (RNA)
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Atria and ventricles exhibit distinct molecular profiles that produce structural and functional differences between the two cardiac compartments. However, factors that determine these differences remain largely undefined. Cardiomyocyte-specific COUP- TFII ablation produces ventricularized atria that exhibit ventricle-like action potentials, increased cardiomyocyte size, and development of extensive T-tubules.

Publication Title

Atrial identity is determined by a COUP-TFII regulatory network.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE33182
Expression data from control and COUP-TFII siRNA treated PC3 cells
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

COUP-TFII, a member of the nuclear receptor superfamily plays a critical role in angiogenesis and organogenesis during embryonic development. Our results indicate that COUP-TFII expression is profoundly upregulated in prostate cancer patients and might serves as biomarker for recurrence prediction. Thus we conduct transcriptome comparison of control and COUP-TFII depleted PC3 cells to gain genomic insights on the biological processes that COUP-TFII is involved in prostate cancer cells. Ingenuity Pathway Analysis (IPA) shows that the most prominent altered pathways in the COUP-TFII depleted cells are related to cell growth; cell cycle progression and DNA damage response. Indeed many growth related genes including E2F1, p21, CDC25A, Cyclin A and Cyclin B are changed in COUP-TFII knockdown cells, suggesting that COUP-TFII might be an important regulator for prostate cancer cell growth. Further functional assays from cells and mice genetic studies confirm the hypothesis that COUP-TFII serve as the major regulator to control prostrate cancer growth. Together, results provide insight into the role of COUP-TFII in prostate tumorigenesis.

Publication Title

COUP-TFII inhibits TGF-β-induced growth barrier to promote prostate tumorigenesis.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE37046
Combined microRNA/mRNA transcriptome analysis reveals angiogenic microRNAs-genes pathway of human late endothelial precursor cells.
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Deficiency of the microRNA-31-microRNA-720 pathway in the plasma and endothelial progenitor cells from patients with coronary artery disease.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
accession-icon GSE37045
Gene expression patterns of distinct human endothelial precursor cells
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Early EPCs (eEPCs) appear at less than 1 week in culture dishes, whereas late EPCs (LEPCs) appear late at 2-4 weeks. Distinct angiogenic properties between these two EPC subpopulations have been disclosed by the angiogenesis assay: late EPCs, but not eEPCs, form vascular networks de novo and are able to incorporate into vascular networks. On the contrary, eEPCs, but not late ones, indirectly augment tubulogenesis even when physically separated by a Transwell membrane, implying the involvement of a cytokine-based paracrine mechanism.

Publication Title

Deficiency of the microRNA-31-microRNA-720 pathway in the plasma and endothelial progenitor cells from patients with coronary artery disease.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE37044
mRNA expression profiles in far-infrared treated human endothelial precursor cells
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

High glucose impairs the angiogenic activities of late endothelial precursor cells (EPC). We found that far infrared (FIR) treatment restored partially the activity of late EPC. However, the mechanisms are unclear. We performed gene expression microarray analysis to assess the expression profiles of high glucose-treated late EPC with or without FIR treatment.

Publication Title

Deficiency of the microRNA-31-microRNA-720 pathway in the plasma and endothelial progenitor cells from patients with coronary artery disease.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE23882
Microarray analysis of gene expression profile in HCT116 colon cancer cells expressed the isoform A or isoform B of the Tazarotene-induced gene 1.
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Tazarotene-induced gene 1 (TIG1), also named as retinoic acid receptor responder 1 (RARRES1), is a retinoid inducible type II tumor suppressor gene; the TIG1B isoform inhibits growth and invasion of cancer cells. Expression of TIG1B is frequently downregulated in various cancer tissues; however, the expression and activities of the TIG1A isoform has yet to be analyzed. This study investigated the effects of TIG1A and TIG1B isoforms on gene expression profiles of colon cancer cells. TIG1A, TIG1B and control stable clones derived from HCT116 colon cells were established using the GeneSwitch system. TIG1 isoform expression was induced upon 5 micro Molar of mifepristone (MFP) treatment for 24 hr. Biological triplicate samples were prepared and gene expression profiles were determined by microarray using human genome HGU133 plus 2 array (Affymatrix). Upon induction of TIG1A and TIG1B expression for 24 hr, a total of 129 and 55 genes were significantly altered, respectively. Of the genes analyzed, 23 and 6 genes were up- and downregulated, respectively in both TIG1A and TIG1B expressing cells.

Publication Title

G protein-coupled receptor kinase 5 mediates Tazarotene-induced gene 1-induced growth suppression of human colon cancer cells.

Sample Metadata Fields

Cell line, Time

View Samples
accession-icon GSE33301
Expression data from control and COUP-TFII siRNA treated HUVEC cells
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

COUP-TFII plays a critical role in angiogenesis during development. It has also been shown to suppress Notch signaling pathway to confer vein identity. However, the downstream targets and the mechanism mediate COUP-TFII function to regulate these processes remain elusive. To identify the downstream targets and the mechanism by which COUP-TFII regulates agiogenesis and vein specification, we knocked down COUP-TFII in HUVEC cells using COUP-TFII specific siRNA and used microarray analysis to identify downstream targets. Interestingly, we found the expression of many genes in the cell cycle pathway and Notch signaling pathway are significantly altered in the COUP-TFII depleted cells.

Publication Title

COUP-TFII is a major regulator of cell cycle and Notch signaling pathways.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact