The differentiated state of somatic cells provides barriers for the efficient derivation of induced pluripotent stem cells (iPSCs). To address why some cell types reprogram more readily than others, we studied the effect of combined modulation of cellular signaling pathways. This revealed that inhibition of TGF together with activation of Wnt signaling in presence of ascorbic acid allows >80% of murine fibroblasts to acquire pluripotency after one week of reprogramming factor expression. In contrast, hepatic progenitors and blood progenitors predominantly required only TGF inhibition or canonical Wnt activation, respectively, to reprogram at efficiencies approaching 100%. Strikingly, blood progenitors reactivated endogenous pluripotency loci in a highly synchronous manner. We further demonstrate that expression of specific chromatin-modifying enzymes and reduced TGF/MAP kinase activity are intrinsic properties associated with the unique reprogramming response of these cells. Together, our observations define novel cell type-specific requirements for the rapid and synchronous reprogramming of somatic cells.
Combinatorial modulation of signaling pathways reveals cell-type-specific requirements for highly efficient and synchronous iPSC reprogramming.
Specimen part, Time
View SamplesCharacterization of the transcriptome of normal and abnormal embryos. Overall design: Gene expression profiling of every mono and trisomy.
Human blastocysts of normal and abnormal karyotypes display distinct transcriptome profiles.
Specimen part, Subject
View SamplesGenome-wide mapping and characterization of novel Notch-regulated long non-coding RNAs in acute leukemia Overall design: Total RNA was extracted from samples using the RNeasy Plus mini kit (Life Technologies, Carlsbad, CA). Samples were then subject to PolyA selection (Figures 1E, 5F and 5G only) using oligo-dT beads (Life Technologies, Carlsbad, CA) or rRNA removal (all other samples) using the Ribo-Zero kit (Epicentre, Madison, WI) according to the manufacturers instructions. The resulting RNA samples were then used as input for library construction using the dUTP method as described by Parkhomchuck et al, 2009. RNA libraries were then sequenced on the Illumina HiSeq 2000 or 2500 using 50bp paired-end reads.
Genome-wide mapping and characterization of Notch-regulated long noncoding RNAs in acute leukemia.
No sample metadata fields
View SamplesPurpose: The goal of this study is to analyze the transcriptional pathways regulated by Fbxo22 and Keap1 in mouse lung adeno carcinoma cells. Methods: mouse lung adeno carcinoma cells either Keap1 wild type (KP) or mutant (KPK), have been transfected for 3 days with siRNA targeting Fbxo22. Knock down efficiency has been evaluated by western blot (using specific antibody for Fbxo22) and qPCR (using specific oligos for Fbxo22) . Results: The transcriptomic analysis helps us to support our finding that loss of either Keap1 or Fbxo22 induces metastases Overall design: All 12 samples generated by deep sequencing in triplicate
Nrf2 Activation Promotes Lung Cancer Metastasis by Inhibiting the Degradation of Bach1.
Specimen part, Subject
View SamplesT-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy characterized by infiltration of the bone marrow and other sites with transformed T cell progenitors. The role of tissue microenvironments in the pathogenesis of T-ALL or any other type of acute leukemia is little understood. In delineating interactions between T-ALL cells and their environment, we initially found that T-ALL cells express high surface levels of the chemokine receptor CXCR4. Intravital imaging of an intact tibia revealed T-ALL cells in direct contact with bone marrow stromal cells producing the CXCR4 ligand, CXCL12. Genetic targeting of CXCR4 on T-ALL cells resulted in a marked reduction of leukemia burden and prolonged disease remission, and disruption of the CXCL12/CXCR4 axis using small molecule inhibitors prevented T-ALL progression in a primary xenograft model. Finally, we were able to show that CXCR4 inhibition significantly decreased expression of Myc and its target genes. Myc expression is a key regulator of T-ALL leukemia initiating cell (LIC) activity, suggesting that CXCR4 inhibition can suppress LIC activity by silencing the Myc response in T-ALL cells. Our data suggest that targeting of CXCL12/CXCR4 signaling could be a powerful new tool for combating T-ALL, a disease with no current targeted therapies. Overall design: Mouse T-ALL cells were treated ex vivo with Cxcr4 inhibitor AMD3100 or vehicle control. Additionally, mouse T-ALL primary tumors were isolated from control (Cxcr4+/+) or knockout (Cxcr4-/-) animals. Total RNA was extracted from samples using the RNeasy Plus Mini Kit (Qiagen). Samples were then subject to PolyA selection using oligo-dT beads (Life Technologies, Carlsbad, CA) according to the manufacturer''s instructions. The resulting RNA samples were then used as input for library construction using the dUTP method as described by Parkhomchuck et al., 2009. RNA libraries were then sequenced on the Illumina HiSeq 2500 using 50bp single-end reads.
CXCL12-Producing Vascular Endothelial Niches Control Acute T Cell Leukemia Maintenance.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Regulation of transcriptional elongation in pluripotency and cell differentiation by the PHD-finger protein Phf5a.
Specimen part, Cell line
View SamplesPhf5a regulates transcription elongation in mouse embryonic stem cells (ESCs), through regulation of the Paf1 complex.
Regulation of transcriptional elongation in pluripotency and cell differentiation by the PHD-finger protein Phf5a.
Specimen part, Cell line
View SamplesWe performed RNA-sequencing in c-Kit+ cells that were infected with retroviruses expressing shRNAs for Renilla, Rad21, Smc1a, Smc3 or Stag2. These cells were grown in methylcellulose (M3434) for either one passage (P1) or replated for five passages (P5). Overall design: RNA-sequencing control (Ren) and cohesin (Rad21, Smc1a, Smc3 and Stag2) knockdown cells.
Cohesin loss alters adult hematopoietic stem cell homeostasis, leading to myeloproliferative neoplasms.
Specimen part, Subject
View SamplesWe performed RNA-sequencing in LSK cells (Lin(neg)/c-Kit(+)/Sca-1(+)) from shRNA mice carrying an shRNA for Renilla, Smc1a or Stag2. Overall design: RNA-sequencing control (Renilla) and cohesin (Smc1a and Stag2) knockdown cells.
Cohesin loss alters adult hematopoietic stem cell homeostasis, leading to myeloproliferative neoplasms.
Specimen part, Subject
View SamplesFBXW7 modulates stress response by post-translational modification of HSF1 HSF1 orchestrates the heat-shock response upon exposure to heat stress and activates a transcriptional program vital for cancer cells. Genes positively regulated by HSF1 show increeased expression during heat shock while their expression is reduced during recovery. Genes negatively regulated by HSF1 show the opposite pattern. In this study we utilized the HCT116 FBXW7 KO colon cell line and its wild type counterpart to monitor gene expression changes during heat shock (42oC, 1 hour) and recovery (37oC for 2 hours post heat shock) using RNA sequencing. These results revealed that the heat-shock response pathway is prolonged in cells deficient for FBXW7. Overall design: Whole RNA was extracted from 1 million HCT116 WT or FBXW7KO cells using the RNAeasy kit (Qiagen) according to the manufacturer’s protocol. Poly-A+ (magnetic oligodT-containing beads (Invitrogen)) or Ribominus RNA was used for library preparation. cDNA preparation and strand-specific library construction was performed using the dUTP method. Libraries were sequenced on the Illumina HiSeq 2000 using 50bp single-read method. Differential gene expression analysis was performed for each matched recovery versus heat-shock pairs, separately in each biological replicate and cell line (WT or KO). Two types of comparisons were tested: (a) WT recovery vs WT heat shock, (b) FBXW7 KO recovery vs heat shock.
FBXW7 modulates cellular stress response and metastatic potential through HSF1 post-translational modification.
No sample metadata fields
View Samples