Genetic Manipulation to increase number of ISC (intestinal stem cells) and gene expression profiling to identify ISC regulators
Gene expression profiling identifies the zinc-finger protein Charlatan as a regulator of intestinal stem cells in Drosophila.
Sex, Specimen part
View SamplesInnate immune responses of plant cells confer the first line of defence against pathogens. Signals generated by activated receptors are integrated inside the cell and converge on transcriptional programmes in the nucleus. The Arabidopsis Toll-related intracellular receptor RPS4 operates inside nuclei to trigger resistance to Pseudomonas bacteria expressing AvrRps4 and defence gene reprogramming through the stress response regulator, EDS1.
Arabidopsis TNL-WRKY domain receptor RRS1 contributes to temperature-conditioned RPS4 auto-immunity.
Specimen part
View SamplesWe performed global scale microarray analysis to identify detailed mechanisms by which nonpermissive temperature induces cell growth arrest and differentiation in astrocyte RCG-12 cells harboring temperature-sensitive simian virus 40 large T-antigen by using an Affymetrix GeneChip system. Astrocyte RCG-12 cells used in this study were derived from primary cultured rat cortical glia cells infecting with a temperature-sensitive simian virus 40 large T-antigen. Although the cells grew continuously at the permissive temperature, the nonpermissive temperature led to cell growth arrest and differentiation. Of the 15,923 probe sets analyzed, nonpermissive temperature differentially expressed 556 probe sets by >2.0-fold.
Identification of genetic networks involved in the cell growth arrest and differentiation of a rat astrocyte cell line RCG-12.
No sample metadata fields
View SamplesTL1A contributes to the pathogenesis of several chronic inflammatory diseases, including Inflammatory Bowel Diseases by enhancing TH1, TH17, and TH2 responses. TL1A mediates a strong co-stimulation of these TH subsets particularly of mucosal CCR9+ T cells. However, the signaling pathways that TL1A induces in different TH subsets are incompletely understood. Here, we investigated the function of TL1A on human TH17 cells. TL1A together with TGF- IL-6, and IL-23 enhanced the secretion of IL-17 and IFN- from human CD4+ memory T cells. TL1A induced the expression of the transcription factors BATF and T-bet that correlated with the secretion of IL-17 and IFN-. In contrast, TL1A alone induced high levels of IL-22 in memory CD4+ T cells and committed TH17 cells. However, TL1A did not enhance expression of IL-17A in TH17 cells. Expression of the transcription factor aryl hydrocarbon receptor that regulates expression of IL-22 was not affected by TL1A. We performed transcriptome analysis of TH17 cells to determine genes that are transcriptionally regulated by TL1A. transcriptome analysis revealed increased expression of IL-9 in response to TL1A.
The TNF family member TL1A induces IL-22 secretion in committed human T<sub>h</sub>17 cells via IL-9 induction.
Specimen part
View SamplesRecognition of microbial patterns and host derived damage signals by host pattern recognition receptors is a key step in immune activation in multicellular eukaryotes. Here we show how mutations in ethylene signaling and the coreceptor bak1 affect host immune responses triggered by elicitors.
Layered pattern receptor signaling via ethylene and endogenous elicitor peptides during Arabidopsis immunity to bacterial infection.
Treatment, Time
View SamplesWe used the myoma model in conjunction with gene expression profiling with microarray data as an efficient tool for high throughput analysis and to screen for differentially expressed genes. Our aim was to identify candidates playing an important role in SLPI and/or MMP-promoted tumor invasion by comparing oral carcinoma Ca9-22 cells, which highly express secretory leukocyte protease inhibitor (SLPI) gene, with SLPI-deficient Ca9-22 cells.
Human uterus myoma and gene expression profiling: A novel in vitro model for studying secretory leukocyte protease inhibitor-mediated tumor invasion.
Cell line
View SamplesGene expression throughout the reproductive process in rice (Oryza sativa) beginning with primordia development through pollination/fertilization to zygote formation was analyzed. We analyzed 25 stages/organs of rice reproductive development including early microsporogenesis stages with 57,381 probe sets, and identified around 26,000 expressed probe sets in each stage. Fine dissection of 25 reproductive stages/organs combined with detailed microarray profiling revealed dramatic, coordinated and finely tuned changes in gene expression. Decrease of expressed genes in the pollen maturation process was observed in a similar way with Arabidopsis and maize. An almost equal number of ab initio predicted genes and cloned genes appeared or disappeared coordinated with developmental stage progression. A large number of organ-/stage-specific genes were identified; notably 2,593 probe sets for developing anther, including 932 probe sets corresponding to ab initio predicted genes. Analysis of cell cycle-related genes revealed that several CDKs, cyclins and components of SCF E3 ubiquitin ligase complexes were expressed specifically in reproductive organs. Cell wall biosynthesis or degradation protein genes and transcription factor genes expressed specifically in reproductive stages were also newly identified. Rice genes homologous to reproduction-related genes in other plants showed expression profiles both consistent and inconsistent with their predicted functions. The rice reproductive expression atlas is likely to be the deepest and most comprehensive dataset available, indispensable for unraveling functions of many specific genes in plant reproductive processes that have not yet been thoroughly analyzed.
Rice expression atlas in reproductive development.
No sample metadata fields
View SamplesGene expression throughout the reproductive process in rice (Oryza sativa) beginning with primordia development through pollination/fertilization to zygote formation was analyzed. We analyzed 25 stages/organs of rice reproductive development including early microsporogenesis stages with 57,381 probe sets, and identified around 26,000 expressed probe sets in each stage. Fine dissection of 25 reproductive stages/organs combined with detailed microarray profiling revealed dramatic, coordinated and finely tuned changes in gene expression. Decrease of expressed genes in the pollen maturation process was observed in a similar way with Arabidopsis and maize. An almost equal number of ab initio predicted genes and cloned genes appeared or disappeared coordinated with developmental stage progression. A large number of organ-/stage-specific genes were identified; notably 2,593 probe sets for developing anther, including 932 probe sets corresponding to ab initio predicted genes. Analysis of cell cycle-related genes revealed that several CDKs, cyclins and components of SCF E3 ubiquitin ligase complexes were expressed specifically in reproductive organs. Cell wall biosynthesis or degradation protein genes and transcription factor genes expressed specifically in reproductive stages were also newly identified. Rice genes homologous to reproduction-related genes in other plants showed expression profiles both consistent and inconsistent with their predicted functions. The rice reproductive expression atlas is likely to be the deepest and most comprehensive dataset available, indispensable for unraveling functions of many specific genes in plant reproductive processes that have not yet been thoroughly analyzed.
Rice expression atlas in reproductive development.
No sample metadata fields
View SamplesGene expression throughout the reproductive process in rice (Oryza sativa) beginning with primordia development through pollination/fertilization to zygote formation was analyzed. We analyzed 25 stages/organs of rice reproductive development including early microsporogenesis stages with 57,381 probe sets, and identified around 26,000 expressed probe sets in each stage. Fine dissection of 25 reproductive stages/organs combined with detailed microarray profiling revealed dramatic, coordinated and finely tuned changes in gene expression. Decrease of expressed genes in the pollen maturation process was observed in a similar way with Arabidopsis and maize. An almost equal number of ab initio predicted genes and cloned genes appeared or disappeared coordinated with developmental stage progression. A large number of organ-/stage-specific genes were identified; notably 2,593 probe sets for developing anther, including 932 probe sets corresponding to ab initio predicted genes. Analysis of cell cycle-related genes revealed that several CDKs, cyclins and components of SCF E3 ubiquitin ligase complexes were expressed specifically in reproductive organs. Cell wall biosynthesis or degradation protein genes and transcription factor genes expressed specifically in reproductive stages were also newly identified. Rice genes homologous to reproduction-related genes in other plants showed expression profiles both consistent and inconsistent with their predicted functions. The rice reproductive expression atlas is likely to be the deepest and most comprehensive dataset available, indispensable for unraveling functions of many specific genes in plant reproductive processes that have not yet been thoroughly analyzed.
Rice expression atlas in reproductive development.
No sample metadata fields
View SamplesGene expression throughout the reproductive process in rice (Oryza sativa) beginning with primordia development through pollination/fertilization to zygote formation was analyzed. We analyzed 25 stages/organs of rice reproductive development including early microsporogenesis stages with 57,381 probe sets, and identified around 26,000 expressed probe sets in each stage. Fine dissection of 25 reproductive stages/organs combined with detailed microarray profiling revealed dramatic, coordinated and finely tuned changes in gene expression. Decrease of expressed genes in the pollen maturation process was observed in a similar way with Arabidopsis and maize. An almost equal number of ab initio predicted genes and cloned genes appeared or disappeared coordinated with developmental stage progression. A large number of organ-/stage-specific genes were identified; notably 2,593 probe sets for developing anther, including 932 probe sets corresponding to ab initio predicted genes. Analysis of cell cycle-related genes revealed that several CDKs, cyclins and components of SCF E3 ubiquitin ligase complexes were expressed specifically in reproductive organs. Cell wall biosynthesis or degradation protein genes and transcription factor genes expressed specifically in reproductive stages were also newly identified. Rice genes homologous to reproduction-related genes in other plants showed expression profiles both consistent and inconsistent with their predicted functions. The rice reproductive expression atlas is likely to be the deepest and most comprehensive dataset available, indispensable for unraveling functions of many specific genes in plant reproductive processes that have not yet been thoroughly analyzed.
Rice expression atlas in reproductive development.
No sample metadata fields
View Samples