We performed a global analysis of both miRNAs and mRNAs expression across sixteen human cell lines and extracted negatively correlated pairs of miRNA and mRNA which indicate miRNA-target relationship. The many of known-target of miR-124a showed negative correlation, suggesting our analysis were valid. We further extracted physically relevant miRNA-target gene pairs, applying computational target prediction algorism with inverse correlations of miRNA and mRNA expression. Furthermore, Gene Ontology-based annotation and functional enrichment analysis of the extracted miRNA-target gene pairs indicated putative functions of miRNAs.
Global correlation analysis for micro-RNA and mRNA expression profiles in human cell lines.
No sample metadata fields
View SamplesXPA is required for Nucleotide Excision Repair system, which could function to repair DNA damage induced by the UV. UV damage on the genomic DNA cannot be removed, thus persistence of damage could affect the transcriptional machinary.
Mitotic genes are transcriptionally upregulated in the fibroblast irradiated with very low doses of UV-C.
Specimen part, Disease
View SamplesMicroRNAs are small non-coding RNA species, some of which are playing important roles in cell differentiation. However, the level of participations of microRNAs in epithelial cell differentiation is largely unknown. Here, we found that expression levels of four microRNAs (miR-210, miR-338-3p, miR-33a and miR-451) were significantly increased in differentiated stage of T84 cells, compared with undifferentiated stage. Additionally, we demonstrate that miR-338-3p and miR-451 contribute to the formation of epithelial basolateral polarity by facilitating translocalization of beta1 integrin to the basolateral membrane. However, candidate target mRNAs of miR-338-3p and miR-451 and the mechanism behind observed phenomena is uncertain. Then, we performed comprehensive gene expression analysis to identify candidate target mRNAs and understand their mechanisms.
MicroRNA-338-3p and microRNA-451 contribute to the formation of basolateral polarity in epithelial cells.
Cell line, Treatment, Time
View SamplesExpression data from rat with anti-glomerular basement membrane nephritis (anti-GBM). We used microarrays to analyze the transcriptome of kidney from anti-GBM model rat with or without drug treatment
Effects of a Tricaprylin Emulsion on Anti-glomerular Basement Membrane Glomerulonephritis in Rats: In Vivo and in Silico Studies.
Specimen part
View SamplesTo understand the role of prostaglandin (PG) receptor EP2 (Ptger2) signaling in ovulation and fertilization, we investigated time-dependent expression profiles in wild-type (WT) and Ptger2-/- cumuli before and after ovulation by using microarrays.
Expression profiling of cumulus cells reveals functional changes during ovulation and central roles of prostaglandin EP2 receptor in cAMP signaling.
Sex, Specimen part
View SamplesWe found that auxin stimulates gene expression of DWF4, which encodes a rate-dertermining step in brassinosteroid biosynthesis pathways. This increased gene expressioin subsequently led to elevation of the biosynthetic flux in Arabidopsis roots.
Auxin stimulates DWARF4 expression and brassinosteroid biosynthesis in Arabidopsis.
No sample metadata fields
View SamplesMore effective therapeutic approaches for castration-resistant prostate cancer (CRPC) are urgently needed, thus reinforcing the need to understand how prostate tumors progress to castration resistance. We have established a novel mouse xenograft model of prostate cancer, KUCaP-2, which expresses the wild-type androgen receptor (AR) and which produces the prostate-specific antigen (PSA). In this model, tumors regress soon after castration, but then reproducibly restore their ability to proliferate after 1 to 2 months without AR mutation, mimicking the clinical behavior of CRPC. In the present study, we used this model to identify novel therapeutic targets for CRPC. Evaluating tumor tissues at various stages by gene expression profiling, we discovered that the prostaglandin E receptor EP4 subtype (EP4) was significantly upregulated during progression to castration resistance. Immunohistochemical results of human prostate cancer tissues confirmed that EP4 expression was higher in CRPC compared with hormone-nave prostate cancer. Ectopic overexpression of EP4 in LNCaP cells (LNCaP-EP4 cells) drove proliferation and PSA production in the absence of androgen supplementation in vitro and in vivo. Androgen-independent proliferation of LNCaP-EP4 cells was suppressed when AR expression was attenuated by RNA interference. Treatment of LNCaP-EP4 cells with a specific EP4 antagonist, ONO-AE3-208, decreased intracellular cyclic AMP levels, suppressed PSA production in vitro, and inhibited castration-resistant growth of LNCaP-EP4 or KUCaP-2 tumors in vivo. Our findings reveal that EP4 overexpression, via AR activation, supports an important mechanism for castration-resistant progression of prostate cancer. Furthermore, they prompt further evaluation of EP4 antagonists as a novel therapeutic modality to treat CRPC.
Identification of EP4 as a potential target for the treatment of castration-resistant prostate cancer using a novel xenograft model.
Specimen part
View SamplesThis array set was used to identify the genes that are highly expressed in the mouse suprachiasmatic nucleus (SCN). Because pharmacological inhibition of Gai/o activity with pertussis toxin hampers intercellular synchronization and causes dampened rhythms of the entire SCN, we hypothesized that member(s) of the Regulator of G protein Signaling (RGS) family might contribute to synchronized cellular oscillations in the SCN. To test this hypothesis, we surveyed all known mouse Rgs genes for their expression by using GeneChip and selected the genes that are highly expressed in the SCN for further analysis.
Circadian regulation of intracellular G-protein signalling mediates intercellular synchrony and rhythmicity in the suprachiasmatic nucleus.
Sex, Age, Specimen part, Disease, Treatment, Time
View SamplesRett syndrome (RTT) is a devastating neurodevelopmental disorder that occurs once in every 10,000-15,000 live female births. Despite intensive research, no effective cure is yet available. Valproic acid (VPA) has been used widely to treat mood disorder, epilepsy, and a growing number of other disorders. In limited clinical studies, VPA has also been used to control seizure in RTT patients with promising albeit somewhat unclear efficacy. In this study we tested the effect of VPA on the neurological symptoms of RTT and discovered that short-term VPA treatment during the symptomatic period could reduce neurological symptoms in RTT mice. We found that VPA restores the expression of a subset of genes in RTT mouse brains, and these genes clustered in neurological disease and developmental disorder networks. Our data suggest that VPA could be used as a drug to alleviate RTT symptoms.
VPA alleviates neurological deficits and restores gene expression in a mouse model of Rett syndrome.
Specimen part
View SamplesThe QTL for fatty liver was mapped on mouse chromosome 12, designated as Fl1sa. Iah1 gene is a candidate gene for Fl1sa . In mammal, Iah1 function has been largely unknown.
Ablation of Iah1, a candidate gene for diet-induced fatty liver, does not affect liver lipid accumulation in mice.
Treatment
View Samples