Myocardial infarction (MI) often results in left ventricular (LV) remodeling followed by heart failure (HF). It is of great clinical importance to understand the molecular mechanisms that trigger transition from compensated LV injury to HF and to identify relevant diagnostic biomarkers. In this study, we performed transcriptional profiling of LVs in rats with a wide range of experimentally induced infarct sizes and of peripheral blood mononuclear cells (PBMCs) in animals that developed HF.
Transcriptional profiling of left ventricle and peripheral blood mononuclear cells in a rat model of postinfarction heart failure.
Specimen part
View SamplesHeart failure (HF) is the most common cause of morbidity and mortality in the developed countries, especially considering the present demographic tendencies in those populations.
Gene expression profiling reveals potential prognostic biomarkers associated with the progression of heart failure.
Specimen part
View SamplesGene expression profile based classification of colonic diseases are suitable for identification of diagnostic mRNA expression patterns which can establish the basis of a new molecular biological diagnostic method
Diagnostic mRNA expression patterns of inflamed, benign, and malignant colorectal biopsy specimen and their correlation with peripheral blood results.
No sample metadata fields
View SamplesThe whole-genome oligonucleotide microarray analysis of peripheral blood samples can contribute to the determination of distant blood markers of local pathophysiological alterations in colorectal diseases. These markers can lead to alternative screening procedures.
Diagnostic mRNA expression patterns of inflamed, benign, and malignant colorectal biopsy specimen and their correlation with peripheral blood results.
No sample metadata fields
View SamplesThe whole-genome oligonucleotide microarray analysis of laser microdissected human colonic epithelial cells can contribute to determination of disease-specific expression alterations in colonic epithelial cells and to localize the origin the expression changes measured in whole biopsy samples.
Reversal of gene expression changes in the colorectal normal-adenoma pathway by NS398 selective COX2 inhibitor.
Specimen part, Disease, Disease stage
View SamplesThe whole-genome oligonucleotide microarray analysis of NS398-treated HT29 colon adenocarcinoma cells samples can give an insight into global molecular background of selective COX2 inhibitor administration in order to find other target molecules and pathways influenced by NS398 selective COX2 inhibitor treatment in the epithelial cells.
Reversal of gene expression changes in the colorectal normal-adenoma pathway by NS398 selective COX2 inhibitor.
Cell line, Treatment
View SamplesTo examine the possibility that biochemical or molecular signatures of endometrium may prove to be more useful, we have investigated whole genome molecular phenotyping (54,600 genes/ESTs) of this tissue sampled across the cycle in 28 normo-ovulatory women, using high-density oligonucleotide microarrays. The results demonstrate that endometrial samples obtained by two different sampling techniques (biopsy and curetting hysterectomy specimens) from subjects who are as normal as possible in a human study and 4 including those with unknown histology, can be classified by their molecular signatures and correspond to known phases of the menstrual cycle with identical results using two independent analytical methods. Also, the results enable global identification of biological processes and molecular mechanisms that occur dynamically in the endometrium in the changing steroid hormone milieu across the menstrual cycle in normo-ovulatory women. The results underscore the potential of gene expression profiling for developing molecular diagnostics of endometrial normalcy and abnormalities and identifying molecular targets for therapeutic purposes in endometrial disorders.
Molecular phenotyping of human endometrium distinguishes menstrual cycle phases and underlying biological processes in normo-ovulatory women.
Age
View SamplesGene expression profiling for identification of genes regulated by DNA methylation
Genome-wide screening of genes regulated by DNA methylation in colon cancer development.
Specimen part, Cell line
View SamplesWhole genomic microarray analysis was performed in order to identify gene expression profile alterations focusing on the dysplastic adenoma-carcinoma transition. Our aims were to determinate characteristic transcript sets for developing diagnostic mRNA expression patterns for objective classification of benign and malignant colorectal diseases and to test the classificatory power of these markers on an independent sample set.
Myofibroblast-derived SFRP1 as potential inhibitor of colorectal carcinoma field effect.
Disease, Disease stage
View SamplesThe whole-genome oligonucleotide microarray analysis gives an opportunity for studying the unidentified gene expression background of the idiopathic and H.pylori related gastric erosive alterations. Using microarrays we compared the whole genome gene expression profile of HP+ and HP- gastric erosions and normal adjacent mucosa to explain the possible role and response to HP infection and to get morphology related mRNA expression patterns.
Helicobacter pylori and antrum erosion-specific gene expression patterns: the discriminative role of CXCL13 and VCAM1 transcripts.
Sex, Age, Specimen part
View Samples