refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 52 results
Sort by

Filters

Technology

Platform

accession-icon SRP145350
A distinct lineage of origin reveals heterogeneity of plasmacytoid dendritic cells III
  • organism-icon Mus musculus
  • sample-icon 56 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Plasmacytoid  dendritic cells (pDCs) are an immune subset devoted to the production of high amounts of type 1 interferons in response to viral infections. While conventional dendritic cells (cDCs) originate mostly from a common dendritic cell progenitor (CDP), pDCs have been shown to develop from both CDPs and common lymphoid progenitors (CLP). Here we found that pDCs developed predominantly from IL7R+ lymphoid progenitor cells. Expression of SiglecH and Ly6D  defined pDC lineage commitment along the lymphoid branch. Transcriptional characterization of SiglecH+Ly6D+ precursors indicated that pDC development requires high expression of the transcription factor IRF8, while pDC identity relies on TCF4. RNA sequencing of IL7R+ lymphoid and CDP-derived pDCs mirrored the heterogeneity of mature pDCs observed by single-cell analysis. Both mature pDC subsets are able to secrete type 1 interferons, but only myeloid-derived pDCs share with cDCs their ability to process and present antigen. Overall design: Bulk RNA Seq was performed from sort purified DN, SP and DP lymphoid progenitors and BM pDCs of 4 individual mice

Publication Title

Distinct progenitor lineages contribute to the heterogeneity of plasmacytoid dendritic cells.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP145346
A distinct lineage of origin reveals heterogeneity of plasmacytoid dendritic cells II (scRNAseq)
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Plasmacytoid  dendritic cells (pDCs) are an immune subset devoted to the production of high amounts of type 1 interferons in response to viral infections. While conventional dendritic cells (cDCs) originate mostly from a common dendritic cell progenitor (CDP), pDCs have been shown to develop from both CDPs and common lymphoid progenitors (CLP). Here we found that pDCs developed predominantly from IL7R+ lymphoid progenitor cells. Expression of SiglecH and Ly6D  defined pDC lineage commitment along the lymphoid branch. Transcriptional characterization of SiglecH+Ly6D+ precursors indicated that pDC development requires high expression of the transcription factor IRF8, while pDC identity relies on TCF4. RNA sequencing of IL7R+ lymphoid and CDP-derived pDCs mirrored the heterogeneity of mature pDCs observed by single-cell analysis. Both mature pDC subsets are able to secrete type 1 interferons, but only myeloid-derived pDCs share with cDCs their ability to process and present antigen. Overall design: BM and splenic pDCs were sorted from 3 mice and 3000 cells/sample were used for single cell RNA Seq (10x genomics)

Publication Title

Distinct progenitor lineages contribute to the heterogeneity of plasmacytoid dendritic cells.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE85173
Graded responses to variable TCR signaling are encoded in the affinities of AICE-containing enhancers responding to BATF and IRF4 [gene expression]
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Variable strengths of T cell receptor (TCR) signaling can produce divergent outcomes for T cell development and function. The mechanisms leading to different outcomes are incompletely understood, but may include distinct activation thresholds for different transcription factors as well as distinct sensitivities among target genes to transcription factors. IRF4 is one transcription factor implicated in responses to variable TCR signal strength. IRF4 expression increases uniformly with increasing TCR signal strength (i.e., analog), but it is unclear how IRF4 induced distinct genes at different levels, rather than different amounts of the same genes. Here, we analyzed global gene expression in TH2 cells and used ChIP-seq to define the relationship between TCR signal strength, enhancer occupancy and transcriptional activity for BATF/IRF4-dependent genes. We show that enhancers exhibit a spectrum of affinity for the BATF/IRF4 ternary complex mediate graded responsiveness of individual genes to increasing TCR signal strength. Differential gene induction by BATF and IRF4 occurs through interaction with enhancer elements of different affinity for BATF/IRF4 complexes. The increased resolution of factor binding site identified using ChIP-exo allowed the identification of a novel AICE2 motif binding BATF/IRF4 with higher affinity and that this may explain the protective role of a single nucleotide polymorphism in the CTLA-4 locus known to decrease the incidence of autoimmune diseases.

Publication Title

Quality of TCR signaling determined by differential affinities of enhancers for the composite BATF-IRF4 transcription factor complex.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE87884
Zeb2 regulates commitment to plasmacytoid dendritic cell and monocyte fate
  • organism-icon Mus musculus
  • sample-icon 29 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Transcription factor Zeb2 regulates commitment to plasmacytoid dendritic cell and monocyte fate.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE87883
Zeb2 regulates commitment to plasmacytoid dendritic cell and monocyte fate (part 2)
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Recent studies have identified Zeb2 as a transcription factor important for the final maturation of natural killer cells and effector CD8+ T cells. We show that Zeb2 is required for the development of two myeloid cell types, the monocyte and the plasmacytoid dendritic cell, and clarify that this factor is not required for the development of classical dendritic cells.

Publication Title

Transcription factor Zeb2 regulates commitment to plasmacytoid dendritic cell and monocyte fate.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE87882
Zeb2 regulates commitment to plasmacytoid dendritic cell and monocyte fate (part 1)
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Recent studies have identified Zeb2 as a transcription factor important for the final maturation of natural killer cells and effector CD8+ T cells. We show that Zeb2 is required for the development of two myeloid cell types, the monocyte and the plasmacytoid dendritic cell, and clarify that this factor is not required for the development of classical dendritic cells.

Publication Title

Transcription factor Zeb2 regulates commitment to plasmacytoid dendritic cell and monocyte fate.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE55067
Small intestine intraepithelial CD4+ T cells after Toxoplasma gondii infection
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Retention of lymphocytes in the intestinal mucosa requires specialized chemokine receptors and adhesion molecules. Here we find that both CD4+CD8+ and CD4+T cells in the intestinal epithelium, as well as CD8+T cells in the intestinal mucosa and mesenteric lymph nodes, express the cell adhesion molecule Crtam upon activation, whereas the ligand of Crtam, Cadm1, is expressed on gut CD103+DCs. Lack of Crtam-Cadm1 interactions in Crtam-/- and Cadm1-/- mice results in loss of CD4+CD8+T cells, which arise from mucosal CD4+T cells that acquire a CD8 lineage expression profile. Following acute oral infection with T. gondii, both WT and Crtam-/- mice mounted a robust TH1 response, but markedly fewer TH17 cells were present in the intestinal mucosa of Crtam-/- mice. The almost exclusive TH1 response in Crtam-/- mice resulted in more efficient control of intestinal T. gondii infection.

Publication Title

CRTAM controls residency of gut CD4+CD8+ T cells in the steady state and maintenance of gut CD4+ Th17 during parasitic infection.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
accession-icon GSE66565
Microarray analysis of committed cDC progenitors
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Analysis of stage-specific gene expression in Zbtb46GFP/+ pre-CD8 DCs, pre-CD4 DCs, CD24 cDCs and CD172a cDCs

Publication Title

Batf3 maintains autoactivation of Irf8 for commitment of a CD8α(+) conventional DC clonogenic progenitor.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE40647
Microarray analysis of WT and Batf3-/- CD8alpha dendritic cells from C57BL/6 spleen
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Batf3 regulates key CD8alpha DC-specific genes.

Publication Title

Compensatory dendritic cell development mediated by BATF-IRF interactions.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP049719
ELAVL1 modulates transcriptome-wide miRNA binding in murine macrophages
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon

Description

Post-transcriptional gene regulation by miRNAs and RNA binding proteins (RBP) is important in development, physiology and disease. To examine the interplay between miRNAs and the RBP ELAVL1 (a.k.a. HuR), we mapped miRNA binding sites on a transcriptome-wide scale in WT and Elavl1 knockout murine bone marrow-derived macrophages. Proximity of ELAVL1 binding sites attenuated miRNA binding to transcripts and promoted gene expression. Transcripts that regulate angiogenesis and macrophage/ endothelial cross talk were preferentially targeted by miRNAs, suggesting that ELAVL1 promotes angiogenesis, at least in part, by antagonism of miRNA function. We found that ELAVL1 antagonized binding of miR-27 to the 3'UTR of Zfp36 mRNA and alleviated miR-27-mediated suppression of the RBP ZFP36 (a.k.a. Tristetraprolin). Thus the miR-27-regulated mechanism synchronizes the expression of ELAVL1 and ZFP36. This study provides a resource for systems-level interrogation of post-transcriptional gene regulation in macrophages, a key cell type in inflammation, angiogenesis and tissue homeostasis. Overall design: Bone marrow derived macrpohges mRNA profiles of 7-day cultured wild type (WT) and Elavl1l-/- mouse bone marrow cells were generated by deep sequencing, with 4 biologic duplication, using Illumina GAII.

Publication Title

ELAVL1 modulates transcriptome-wide miRNA binding in murine macrophages.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact