refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 12 results
Sort by

Filters

Technology

Platform

accession-icon GSE54809
RNA profiling from ovarian and prostate FFPE specimens
  • organism-icon Homo sapiens
  • sample-icon 54 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Comparing Platforms for Messenger RNA Expression Profiling of Archival Formalin-Fixed, Paraffin-Embedded Tissues.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE54808
RNA profiling from prostate FFPE specimens
  • organism-icon Homo sapiens
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

To study feasibility of gene expression profiling from FFPE tissues using NuGen amplified mRNA hybridized on Affymetrix GeneChip Human Gene 1.0 ST arrays, we designed a pilot study utilizing samples from prostate cancer cohort. We selected samples from large-scale epidemiologic studies and clinical trials representative of a wide variety of fixation times, block ages and block storage conditions.

Publication Title

Comparing Platforms for Messenger RNA Expression Profiling of Archival Formalin-Fixed, Paraffin-Embedded Tissues.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE54807
RNA profiling from ovarian FFPE specimens
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

To study feasibility of gene expression profiling from FFPE tissues using NuGen amplified mRNA hybridized on Affymetrix GeneChip Human Gene 1.0 ST arrays, we designed a pilot study utilizing samples from prostate cancer cohort. We selected samples from large-scale epidemiologic studies and clinical trials representative of a wide variety of fixation times, block ages and block storage conditions.

Publication Title

Comparing Platforms for Messenger RNA Expression Profiling of Archival Formalin-Fixed, Paraffin-Embedded Tissues.

Sample Metadata Fields

Disease

View Samples
accession-icon GSE97284
Gene expression profiling of laser capture microdissected prostate specimens
  • organism-icon Homo sapiens
  • sample-icon 188 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

We performed gene expression profiling of laser capture microdissected normal non-neoplastic prostate (cystoprostatectomies) epithelial tissue and compared it to non-transformed and neoplastic low and high grade prostate epithelial tissue from radical prostatectomies, each with its immediately surrounding stroma.

Publication Title

Stromal and epithelial transcriptional map of initiation progression and metastatic potential of human prostate cancer.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP144499
Gene expression analysis of prostate cancer cells treated with fatty acid synthase (FASN) inhibitor IPI-9119
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Alterations in gene expression following fatty acid synthase inhibtion were evaluated in androgen sensitive LNCaP cells and castration resistant 22Rv1 and LNCaP-95 cells. Cell were exposed to 2 concentrations (0.1 and 0.5 uM) of FASN inhibitor IPI-9119 or DMSO for 6 days. Overall design: Differential gene expression anlaysis in 3 prostate cancer cell lines treated with FASN inhibitor IPI-9119

Publication Title

Inhibition of de novo lipogenesis targets androgen receptor signaling in castration-resistant prostate cancer.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE8453
Expression data from yeast strain containing CDC34tm allele compared to WT
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Cdc34 is an essential E2 ubiquitin conjugating enzyme found in nearly all eukaryotes. It contains a highly conserved motif composed of S73/S97/12 amino acid insert near the active site cysteine. This motif is unique to Cdc34/Ubc7 type E2s while other E2s contain K/D/no insert at these positions. To better understand the function of this motif we mutated Cdc34 S73/S97/insert to be K/D/no insert and observed changes in transcript levels in mid-log phase yeast cells. ABSTRACT [Cdc34 is a ubiquitin conjugating enzyme necessary for the ubiquitylation of substrates by the SCF family of ubiquitin ligases. Previous work has shown that the Cdc34 protein is phosphorylated in vivo on serine residues. Cdc34 contains two serines within its catalytic domain, S73 and S97, that together with a 12 amino acid acidic loop, constitute a highly conserved motif (serine, serine, insert) among all members of the Cdc34 family of E2 enzymes. Using phosphospecific antibodies, we show that the essential serine S97 is indeed phosphorylated in vivo. Furthermore, this phosphorylation event is regulated by treatment with pheromone in yeast. Consistently, expression of a Cdc34 mutant lacking this motif (serine, serine, insert) leads to misregulation of the SCF substrates, Sic1, Far1, Cln1 and Cln2 and suppresses the cell cycle arrest brought about by an activated mating pathway. We further explored the function of this motif by microarray analysis and show that the transcripts of nearly the entire Sic1 cluster of co-transcribed genes is altered in a strain the expresses Cdc34 lacking this motif. Our data reveals that this highly conserved motif in Cdc34 and its phosphorylation are important for modulating SCF substrate abundance both transcriptionally and post-transcriptionally.]

Publication Title

New insight into the role of the Cdc34 ubiquitin-conjugating enzyme in cell cycle regulation via Ace2 and Sic1.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP066387
Histone H3 lysine 4 acetylation-methylation dynamics define breast cancer subtypes [RNA-seq]
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq1500

Description

The onset and progression of breast cancer are linked to genetic and epigenetic changes that alter the normal programming of cells. Epigenetic modifications of DNA and histones contribute to chromatin structure that results in the activation or repression of gene expression. Several epigenetic pathways have been shown to be highly deregulated in cancer cells. Targeting specific histone modifications represents a viable strategy to prevent oncogenic transformation, tumor growth or metastasis. Methylation of histone H3 lysine 4 has been extensively studied and shown to mark genes for expression; however this residue can also be acetylated and the specific function of this alteration is less well known. To define the relative roles of histone H3 methylation (H3K4me3) and acetylation (H3K4ac) in breast cancer, we determined genomic regions enriched for both marks in normal-like (MCF10A), transformed (MCF7) and metastatic (MDA-MB-231) cells using a genome-wide ChIP-Seq approach. Our data revealed a genome-wide gain of H3K4ac associated with both early and late breast cancer cell phenotypes, while gain of H3K4me3 was predominantly associated with late stage cancer cells. Enrichment of H3K4ac was overrepresented at promoters of genes associated with cancer-related phenotypic traits, such as estrogen response and epithelial-to-mesenchymal transition pathways. Our findings highlight an important role for H3K4ac in predicting epigenetic changes associated with early stages of transformation. In addition, our data provide a valuable resource for understanding epigenetic signatures that correlate with known breast cancer-associated oncogenic pathways. Overall design: RNA-Seq of cell lines MCF10A, MCF7 and MDA-MB-231.

Publication Title

Histone H3 lysine 4 acetylation and methylation dynamics define breast cancer subtypes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP006729
Sch9 regulates ribosome biogenesis via Stb3, Dot6 and Tod6 and the histone deacetylase complex RPD3L (mRNA-Seq data)
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

TORC1 is a structurally and functionally conserved multiprotein complex that regulates many aspects of eukaryote growth including the synthesis and assembly of ribosomes. The protein kinase activity of this complex is responsive to environmental cues and is potently inhibited by the natural product macrolide rapamycin. Insights into how TORC1 regulates growth have been provided with the recent identification of the rapamycin-sensitive phosphoproteome in yeast. Building on these data, we show here that Sch9, an AGC family kinase and direct substrate of TORC1, promotes ribosome biogenesis (ribi) and ribosomal protein (RP) gene expression via direct inhibitory phosphorylation of three transcription repressors, Stb3, Dot6 and Tod6. Dephosphorylation of these factors allows them to recruit the RPD3L histone deactelyase complex to ribi/RP gene promoters. Since rRNA and tRNA transcription are also under its control, Sch9 appears to be well positioned to coordinately regulate transcriptional aspects of ribosome biogenesis. Overall design: mRNA-Seq of 8 S. cerevisiae strains treated with either DMSO alone or 1NM-PP1, a small molecule inhibitor for analog-sensitive kinases such as sch9-as.

Publication Title

Sch9 regulates ribosome biogenesis via Stb3, Dot6 and Tod6 and the histone deacetylase complex RPD3L.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon GSE55804
Expression data from 26972c yeast bHLHm1 (SAT1)
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

26972c yeast cells were transformed with either empty vector (pYES3) or pYES3:Gm:bHLHm1. Cells were grown on low ammonium concentrations to observe transcriptional changes in the yeast genome in response to the soybean bHLHm1 transcription factor.

Publication Title

Soybean SAT1 (Symbiotic Ammonium Transporter 1) encodes a bHLH transcription factor involved in nodule growth and NH4+ transport.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP062188
Differential Gene Expression between MCF10A and MCF7 cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq1500

Description

These RNA-seq data were generated to correlate with genomic interaction data in a related Hi-C analysis. MCF10A is a normal-like mammary epithelial cell line and MCF7 is a transformed estrogen responsive breast cancer cell line derived from a metastatic site; both are commonly used in models of breast cancer progression. Analysis revealed a set of genes related to repression of WNT signalling that were both up-regulated in MCF7 and located in genomic regions that had transitioned from closed to open structure in MCF7. Overall design: RNA-seq of MCF10A and MCF7 cells. 3 replicates each. Sequencing was strand-specific and conducted on ribo-depleted RNA.

Publication Title

Chromatin interaction analysis reveals changes in small chromosome and telomere clustering between epithelial and breast cancer cells.

Sample Metadata Fields

No sample metadata fields

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact