refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 32 results
Sort by

Filters

Technology

Platform

accession-icon GSE19698
BMP-mediated inhibition of FGF signaling promotes cardiomyocyte differentiation of anterior heart field progenitors
  • organism-icon Gallus gallus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Chicken Genome Array (chicken)

Description

The transition from progenitor to differentiated cells is critical for successful organogenesis; subtle alterations in this process can lead to developmental disorders. The anterior heart field (AHF) encompasses a niche in which cardiac progenitors maintain their multipotent and undifferentiated nature by signals from the surrounding tissues, which thus far have been poorly defined. Using systems biology approaches and perturbations of signaling molecules in chick embryos, we revealed a tight crosstalk between the bone morphogenic protein (BMP) and fibroblast growth factor (FGF) signaling pathways within the AHF: BMP4 promotes myofibrillar gene expression and cardiomyocyte contractions, by blocking FGF signaling. Furthermore, inhibition of the FGF-ERK pathway is both sufficient and necessary for these processes, suggesting that FGF signaling blocks premature differentiation of cardiac progenitors in the AHF. Investigating the molecular mechanisms downstream to BMP signaling revealed that BMP4 induced a set of neural crest-related genes; including MSX1, which was sufficient to induce cardiomyocyte differentiation. We suggest that BMP and FGF signaling pathways act via inter- and intra-regulatory loops in multiple tissues, to coordinate the balance between proliferation and differentiation of cardiac progenitors.

Publication Title

BMP-mediated inhibition of FGF signaling promotes cardiomyocyte differentiation of anterior heart field progenitors.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE42389
Pharyngeal mesoderm regulatory network controls cardiac and head muscle morphogenesis
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

The search for developmental mechanisms driving vertebrate organogenesis has paved the way toward a deeper understanding of birth defects. During embryogenesis, parts of the heart and craniofacial muscles arise from pharyngeal mesoderm (PM) progenitors. Here, we reveal a hierarchical regulatory network of a set of transcription factors expressed in the PM that initiates heart and craniofacial organogenesis. Genetic perturbation of this network in mice resulted in heart and craniofacial muscle defects, revealing robust cross-regulation between its members. We identified Lhx2 as a novel player during cardiac and pharyngeal muscle development. Lhx2 and Tcf21 genetically interact with Tbx1, the major determinant in the etiology of DiGeorge/velo-cardio-facial/22q11.2 deletion syndrome. Furthermore, knockout of these genes in the mouse recapitulates specific cardiac features of this syndrome. We suggest that PM-derived cardiogenesis and myogenesis are network properties rather than properties specific to individual PM members. These findings shed new light on the developmental underpinnings of congenital defects.

Publication Title

Pharyngeal mesoderm regulatory network controls cardiac and head muscle morphogenesis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE70729
Role of the histone demethylase KDM2B in hematopoietic homeostasis and malignancies
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene Expression Array (primeview), Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Histone demethylase KDM2B regulates lineage commitment in normal and malignant hematopoiesis.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE74960
Role of the histone demethylase KDM2B in hematopoietic homeostasis and malignancies [Kras background mouse gene expression]
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st), Affymetrix Human Gene Expression Array (primeview)

Description

Development of the hematopoietic system is dynamically controlled by the interplay of transcriptional and epigenetic networks to determine cellular identity. Those networks are critical for homeostasis and frequently dysregulated in leukemias. We identified histone demethylase Kdm2b as a critical regulator of definitive hematopoiesis and lineage specification of hematopoietic stem and progenitor cells (HSPCs). RNA sequencing in murine HSPCs and genome-wide chromatin immunoprecipitation studies in human leukemias revealed that Kdm2b regulates differentiation, lineage choice, cytokine signaling, and quiescence.

Publication Title

Histone demethylase KDM2B regulates lineage commitment in normal and malignant hematopoiesis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP060647
Role of the histone demethylase KDM2B in hematopoietic homeostasis and malignancies [RNA-seq]
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Development of the hematopoietic system is dynamically controlled by the interplay of transcriptional and epigenetic networks to determine cellular identity. Those networks are critical for homeostasis and frequently dysregulated in leukemias. We identified histone demethylase Kdm2b as a critical regulator of definitive hematopoiesis and lineage specification of hematopoietic stem and progenitor cells (HSPCs). RNA sequencing in murine HSPCs and genome-wide chromatin immunoprecipitation studies in human leukemias revealed that Kdm2b regulates differentiation, lineage choice, cytokine signaling, and quiescence. Overall design: Comparison of gene expression in wild-type and knockout HSPCs

Publication Title

Histone demethylase KDM2B regulates lineage commitment in normal and malignant hematopoiesis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE57677
Targeting IL13Ralpha2 activates STAT6-TP63 pathway to suppress breast cancer lung metastasis
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

IL13R2 overexpression promotes metastasis of basal-like breast cancers

Publication Title

Targeting IL13Ralpha2 activates STAT6-TP63 pathway to suppress breast cancer lung metastasis.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE46958
Gene expression profiles in roots of hydroponically grown Arabidopsis treated with 0.125 mM gold
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Gold is widely considered to be a biologically inert element; however, it can elicit a profound biological response in plants. Plants can be exposed to significant levels of this precious metal in the environment from naturally occurring sources, as the result of mining activities or more recently resulting from the escalating use of nanoparticles in industry. In this microarray study we have investigated the gene expression response of Arabidopsis thaliana (Arabidopsis) to gold. Although the uptake of metal cations by plant transporters is well characterised, little is known about the uptake of gold, which exists in soil predominantly in a zero-valent state (Au0). We used this study to monitor the expression of candidate genes involved in metal uptake and transport. These show the down-regulation of a discreet number of genes known to be involved in the transport of copper, cadmium, nickel and iron.

Publication Title

Arabidopsis Glutathione Transferases U24 and U25 Exhibit a Range of Detoxification Activities with the Environmental Pollutant and Explosive, 2,4,6-Trinitrotoluene.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP134092
Snapshot of translation in mammalian cells that are depleted of polyamines or replete with polyamines
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Snapshot of translation in mammalian cells that are depleted of polyamines or replete with polyamines. Hek293T cells treated with DFMO or Spermidine. Overall design: DFMO vs. Spermidine treatment

Publication Title

Polyamine Control of Translation Elongation Regulates Start Site Selection on Antizyme Inhibitor mRNA via Ribosome Queuing.

Sample Metadata Fields

Disease, Treatment, Subject

View Samples
accession-icon GSE147387
SMAD1 promoter hypermethylation and lack of SMAD1 expression in Hodgkin Lymphoma
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Global gene expression analysis was performed of several cell lines, mostly classical Hodgkin lymphoma, one DLBCL cell line and one NLPHL cell line.

Publication Title

SMAD1 promoter hypermethylation and lack of SMAD1 expression in Hodgkin lymphoma: a potential target for hypomethylating drug therapy.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE6795
Expression data from C57BL6 tissues and 3T3-L1 fibroblasts
  • organism-icon Mus musculus
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine 11K SubA Array (mu11ksuba)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Xanthine oxidoreductase is a regulator of adipogenesis and PPARgamma activity.

Sample Metadata Fields

No sample metadata fields

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact